Cargando…
Incorporating biological information in sparse principal component analysis with application to genomic data
BACKGROUND: Sparse principal component analysis (PCA) is a popular tool for dimensionality reduction, pattern recognition, and visualization of high dimensional data. It has been recognized that complex biological mechanisms occur through concerted relationships of multiple genes working in networks...
Autores principales: | Li, Ziyi, Safo, Sandra E., Long, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504598/ https://www.ncbi.nlm.nih.gov/pubmed/28697740 http://dx.doi.org/10.1186/s12859-017-1740-7 |
Ejemplares similares
-
Sparse reduced-rank regression for integrating omics data
por: Hilafu, Haileab, et al.
Publicado: (2020) -
Obtaining insights from high-dimensional data: sparse principal covariates regression
por: Van Deun, Katrijn, et al.
Publicado: (2018) -
Super-sparse principal component analyses for high-throughput genomic data
por: Lee, Donghwan, et al.
Publicado: (2010) -
Probabilistic principal component analysis for metabolomic data
por: Nyamundanda, Gift, et al.
Publicado: (2010) -
Sparse multiple co-Inertia analysis with application to integrative analysis of multi -Omics data
por: Min, Eun Jeong, et al.
Publicado: (2020)