Cargando…
Teflon/SiO(2) Bilayer Passivation for Improving the Electrical Reliability of Oxide TFTs Fabricated Using a New Two-Photomask Self-Alignment Process
This study proposes a two-photomask process for fabricating amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES) layers, have undamaged a-IGZO active layers that facilitate superior performa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507041/ https://www.ncbi.nlm.nih.gov/pubmed/28788026 http://dx.doi.org/10.3390/ma8041704 |
Sumario: | This study proposes a two-photomask process for fabricating amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES) layers, have undamaged a-IGZO active layers that facilitate superior performance. In addition, we demonstrate a bilayer passivation method that uses a polytetrafluoroethylene (Teflon) and SiO(2) combination layer for improving the electrical reliability of the fabricated TFTs. Teflon was deposited as a buffer layer through thermal evaporation. The Teflon layer exhibited favorable compatibility with the underlying IGZO channel layer and effectively protected the a-IGZO TFTs from plasma damage during SiO(2) deposition, resulting in a negligible initial performance drop in the a-IGZO TFTs. Compared with passivation-free a-IGZO TFTs, passivated TFTs exhibited superior stability even after 168 h of aging under ambient air at 95% relative humidity. |
---|