Cargando…

Teflon/SiO(2) Bilayer Passivation for Improving the Electrical Reliability of Oxide TFTs Fabricated Using a New Two-Photomask Self-Alignment Process

This study proposes a two-photomask process for fabricating amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES) layers, have undamaged a-IGZO active layers that facilitate superior performa...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Ching-Lin, Shang, Ming-Chi, Li, Bo-Jyun, Lin, Yu-Zuo, Wang, Shea-Jue, Lee, Win-Der, Hung, Bohr-Ran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507041/
https://www.ncbi.nlm.nih.gov/pubmed/28788026
http://dx.doi.org/10.3390/ma8041704
Descripción
Sumario:This study proposes a two-photomask process for fabricating amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES) layers, have undamaged a-IGZO active layers that facilitate superior performance. In addition, we demonstrate a bilayer passivation method that uses a polytetrafluoroethylene (Teflon) and SiO(2) combination layer for improving the electrical reliability of the fabricated TFTs. Teflon was deposited as a buffer layer through thermal evaporation. The Teflon layer exhibited favorable compatibility with the underlying IGZO channel layer and effectively protected the a-IGZO TFTs from plasma damage during SiO(2) deposition, resulting in a negligible initial performance drop in the a-IGZO TFTs. Compared with passivation-free a-IGZO TFTs, passivated TFTs exhibited superior stability even after 168 h of aging under ambient air at 95% relative humidity.