Cargando…

PCSK9 and carbohydrate metabolism: A double-edged sword

Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a paramount role in the degradation of low-density lipoprotein (LDL) receptors (LDLR) on the hepatic cells surface and subsequently affects LDL particles catabolism and LDL cholesterol (LDL-c) levels. The anti-PCSK9 monoclonal antibodies le...

Descripción completa

Detalles Bibliográficos
Autores principales: Filippatos, Theodosios D, Filippas-Ntekouan, Sebastian, Pappa, Eleni, Panagiotopoulou, Thalia, Tsimihodimos, Vasilios, Elisaf, Moses S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507827/
https://www.ncbi.nlm.nih.gov/pubmed/28751953
http://dx.doi.org/10.4239/wjd.v8.i7.311
Descripción
Sumario:Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a paramount role in the degradation of low-density lipoprotein (LDL) receptors (LDLR) on the hepatic cells surface and subsequently affects LDL particles catabolism and LDL cholesterol (LDL-c) levels. The anti-PCSK9 monoclonal antibodies lead to substantial decrease of LDL-c concentration. PCSK9 (which is also expressed in pancreatic delta-cells) can decrease LDLR and subsequently decrease cholesterol accumulation in pancreatic beta-cells, which impairs glucose metabolism and reduces insulin secretion. Thus, a possible adverse effect of PCSK9 inhibitors on carbohydrate metabolism may be expected by this mechanism, which has been supported by the mendelian studies results. On the other hand, clinical data have suggested a detrimental association of PCSK9 with glucose metabolism. So, the inhibition of PCSK9 may be seen as a double-edged sword regarding carbohydrate metabolism. Completed clinical trials have not shown a detrimental effect of PCSK9 inhibitors on diabetes risk, but their short-term duration does not allow definite conclusions.