Cargando…
Conformational Transitions of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor, a Human Class B GPCR
The G protein-coupled pituitary adenylate cyclase-activating polypeptide receptor (PAC1R) is a potential therapeutic target for endocrine, metabolic and stress-related disorders. However, many questions regarding the protein structure and dynamics of PAC1R remain largely unanswered. Using microsecon...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511175/ https://www.ncbi.nlm.nih.gov/pubmed/28710390 http://dx.doi.org/10.1038/s41598-017-05815-x |
Sumario: | The G protein-coupled pituitary adenylate cyclase-activating polypeptide receptor (PAC1R) is a potential therapeutic target for endocrine, metabolic and stress-related disorders. However, many questions regarding the protein structure and dynamics of PAC1R remain largely unanswered. Using microsecond-long simulations, we examined the open and closed PAC1R conformations interconnected within an ensemble of transitional states. The open-to-closed transition can be initiated by “unzipping” the extracellular domain and the transmembrane domain, mediated by a unique segment within the β3-β4 loop. Transitions between different conformational states range between microseconds to milliseconds, which clearly implicate allosteric effects propagating from the extracellular face of the receptor to the intracellular G protein-binding site. Such allosteric dynamics provides structural and mechanistic insights for the activation and modulation of PAC1R and related class B receptors. |
---|