Cargando…
Effects of Sputtering Parameters on AlN Film Growth on Flexible Hastelloy Tapes by Two-Step Deposition Technique
AlN thin films were deposited on flexible Hastelloy tapes and Si (100) substrate by middle-frequency magnetron sputtering. A layer of Y(2)O(3) films was used as a buffer layer for the Hastelloy tapes. A two-step deposition technique was used to prepare the AlN films. The effects of deposition parame...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512352/ https://www.ncbi.nlm.nih.gov/pubmed/28773806 http://dx.doi.org/10.3390/ma9080686 |
_version_ | 1783250470252314624 |
---|---|
author | Peng, Bin Gong, Dongdong Zhang, Wanli Jiang, Jianying Shu, Lin Zhang, Yahui |
author_facet | Peng, Bin Gong, Dongdong Zhang, Wanli Jiang, Jianying Shu, Lin Zhang, Yahui |
author_sort | Peng, Bin |
collection | PubMed |
description | AlN thin films were deposited on flexible Hastelloy tapes and Si (100) substrate by middle-frequency magnetron sputtering. A layer of Y(2)O(3) films was used as a buffer layer for the Hastelloy tapes. A two-step deposition technique was used to prepare the AlN films. The effects of deposition parameters such as sputtering power, N(2)/Ar flow rate and sputtering pressure on the microstructure of the AlN thin films were systematically investigated. The results show that the dependency of the full width at half maximum (FWHM) of AlN/Y(2)O(3)/Hastelloy on the sputtering parameters is similar to that of AlN/Si (100). The FWHM of the AlN (002) peak of the prepared AlN films decreases with increasing sputtering power. The FWHM decreases with the increase of the N(2)/Ar flow rate or sputtering pressure, and increases with the further increase of the N(2)/Ar flow rate or sputtering pressure. The FWHM of the AlN/Y(2)O(3)/Hastelloy prepared under optimized parameters is only 3.7° and its root mean square (RMS) roughness is 5.46 nm. Based on the experimental results, the growth mechanism of AlN thin films prepared by the two-step deposition process was explored. This work would assist us in understanding the AlN film’s growth mechanism of the two-step deposition process, preparing highly c-axis–oriented AlN films on flexible metal tapes and developing flexible surface acoustic wave (SAW) sensors from an application perspective. |
format | Online Article Text |
id | pubmed-5512352 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-55123522017-07-28 Effects of Sputtering Parameters on AlN Film Growth on Flexible Hastelloy Tapes by Two-Step Deposition Technique Peng, Bin Gong, Dongdong Zhang, Wanli Jiang, Jianying Shu, Lin Zhang, Yahui Materials (Basel) Article AlN thin films were deposited on flexible Hastelloy tapes and Si (100) substrate by middle-frequency magnetron sputtering. A layer of Y(2)O(3) films was used as a buffer layer for the Hastelloy tapes. A two-step deposition technique was used to prepare the AlN films. The effects of deposition parameters such as sputtering power, N(2)/Ar flow rate and sputtering pressure on the microstructure of the AlN thin films were systematically investigated. The results show that the dependency of the full width at half maximum (FWHM) of AlN/Y(2)O(3)/Hastelloy on the sputtering parameters is similar to that of AlN/Si (100). The FWHM of the AlN (002) peak of the prepared AlN films decreases with increasing sputtering power. The FWHM decreases with the increase of the N(2)/Ar flow rate or sputtering pressure, and increases with the further increase of the N(2)/Ar flow rate or sputtering pressure. The FWHM of the AlN/Y(2)O(3)/Hastelloy prepared under optimized parameters is only 3.7° and its root mean square (RMS) roughness is 5.46 nm. Based on the experimental results, the growth mechanism of AlN thin films prepared by the two-step deposition process was explored. This work would assist us in understanding the AlN film’s growth mechanism of the two-step deposition process, preparing highly c-axis–oriented AlN films on flexible metal tapes and developing flexible surface acoustic wave (SAW) sensors from an application perspective. MDPI 2016-08-10 /pmc/articles/PMC5512352/ /pubmed/28773806 http://dx.doi.org/10.3390/ma9080686 Text en © 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Peng, Bin Gong, Dongdong Zhang, Wanli Jiang, Jianying Shu, Lin Zhang, Yahui Effects of Sputtering Parameters on AlN Film Growth on Flexible Hastelloy Tapes by Two-Step Deposition Technique |
title | Effects of Sputtering Parameters on AlN Film Growth on Flexible Hastelloy Tapes by Two-Step Deposition Technique |
title_full | Effects of Sputtering Parameters on AlN Film Growth on Flexible Hastelloy Tapes by Two-Step Deposition Technique |
title_fullStr | Effects of Sputtering Parameters on AlN Film Growth on Flexible Hastelloy Tapes by Two-Step Deposition Technique |
title_full_unstemmed | Effects of Sputtering Parameters on AlN Film Growth on Flexible Hastelloy Tapes by Two-Step Deposition Technique |
title_short | Effects of Sputtering Parameters on AlN Film Growth on Flexible Hastelloy Tapes by Two-Step Deposition Technique |
title_sort | effects of sputtering parameters on aln film growth on flexible hastelloy tapes by two-step deposition technique |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512352/ https://www.ncbi.nlm.nih.gov/pubmed/28773806 http://dx.doi.org/10.3390/ma9080686 |
work_keys_str_mv | AT pengbin effectsofsputteringparametersonalnfilmgrowthonflexiblehastelloytapesbytwostepdepositiontechnique AT gongdongdong effectsofsputteringparametersonalnfilmgrowthonflexiblehastelloytapesbytwostepdepositiontechnique AT zhangwanli effectsofsputteringparametersonalnfilmgrowthonflexiblehastelloytapesbytwostepdepositiontechnique AT jiangjianying effectsofsputteringparametersonalnfilmgrowthonflexiblehastelloytapesbytwostepdepositiontechnique AT shulin effectsofsputteringparametersonalnfilmgrowthonflexiblehastelloytapesbytwostepdepositiontechnique AT zhangyahui effectsofsputteringparametersonalnfilmgrowthonflexiblehastelloytapesbytwostepdepositiontechnique |