Cargando…
Conduction Mechanisms in Resistance Switching Memory Devices Using Transparent Boron Doped Zinc Oxide Films
In this work, metal/oxide/metal capacitors were fabricated and investigated using transparent boron doped zinc oxide (ZnO:B) films for resistance switching memory applications. The optical band gap of ZnO:B films was determined to be about 3.26 eV and the average value of transmittance of ZnO:B film...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512638/ https://www.ncbi.nlm.nih.gov/pubmed/28788250 http://dx.doi.org/10.3390/ma7117339 |
Sumario: | In this work, metal/oxide/metal capacitors were fabricated and investigated using transparent boron doped zinc oxide (ZnO:B) films for resistance switching memory applications. The optical band gap of ZnO:B films was determined to be about 3.26 eV and the average value of transmittance of ZnO:B films was about 91% in the visible light region. Experimental results indicated that the resistance switching in the W/ZnO:B/W structure is nonpolar. The resistance ratio of high resistance state (HRS) to low resistance state (LRS) is about of the order of 10(5) at room temperature. According to the temperature dependence of current-voltage characteristics, the conduction mechanism in ZnO:B films is dominated by hopping conduction and Ohmic conduction in HRS and LRS, respectively. Therefore, trap spacing (1.2 nm) and trap energy levels in ZnO:B films could be obtained. |
---|