Cargando…
Trap Exploration in Amorphous Boron-Doped ZnO Films
This paper addresses the trap exploration in amorphous boron-doped ZnO (ZnO:B) films using an asymmetric structure of metal-oxide-metal. In this work, the structure of Ni/ZnO:B/TaN is adopted and the ZnO:B film is deposited by RF magnetron sputtering. The as-deposited ZnO:B film is amorphous and bec...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512656/ https://www.ncbi.nlm.nih.gov/pubmed/28793534 http://dx.doi.org/10.3390/ma8095276 |
Sumario: | This paper addresses the trap exploration in amorphous boron-doped ZnO (ZnO:B) films using an asymmetric structure of metal-oxide-metal. In this work, the structure of Ni/ZnO:B/TaN is adopted and the ZnO:B film is deposited by RF magnetron sputtering. The as-deposited ZnO:B film is amorphous and becomes polycrystalline when annealing temperature is above 500 °C. According to the analysis of conduction mechanism in the as-deposited ZnO:B devices, Ohmic conduction is obtained at positive bias voltage because of the Ohmic contact at the TaN/ZnO:B interface. Meanwhile, hopping conduction is obtained at negative bias voltage due to the defective traps in ZnO:B in which the trap energy level is lower than the energy barrier at the Ni/ZnO:B interface. In the hopping conduction, the temperature dependence of I-V characteristics reveals that the higher the temperature, the lower the current. This suggests that no single-level traps, but only multiple-level traps, exist in the amorphous ZnO:B films. Accordingly, the trap energy levels (0.46–0.64 eV) and trap spacing (1.1 nm) in these multiple-level traps are extracted. |
---|