Cargando…

A sequence level model of an intact locus predicts the location and function of nonadditive enhancers

Metazoan gene expression is controlled through the action of long stretches of noncoding DNA that contain enhancers—shorter sequences responsible for controlling a single aspect of a gene’s expression pattern. Models built on thermodynamics have shown how enhancers interpret protein concentration in...

Descripción completa

Detalles Bibliográficos
Autores principales: Barr, Kenneth A., Reinitz, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513433/
https://www.ncbi.nlm.nih.gov/pubmed/28715438
http://dx.doi.org/10.1371/journal.pone.0180861
Descripción
Sumario:Metazoan gene expression is controlled through the action of long stretches of noncoding DNA that contain enhancers—shorter sequences responsible for controlling a single aspect of a gene’s expression pattern. Models built on thermodynamics have shown how enhancers interpret protein concentration in order to determine specific levels of gene expression, but the emergent regulatory logic of a complete regulatory locus shows qualitative and quantitative differences from isolated enhancers. Such differences may arise from steric competition limiting the quantity of DNA that can simultaneously influence the transcription machinery. We incorporated this competition into a mechanistic model of gene regulation, generated efficient algorithms for this computation, and applied it to the regulation of Drosophila even-skipped (eve). This model finds the location of enhancers and identifies which factors control the boundaries of eve expression. This model predicts a new enhancer that, when assayed in vivo, drives expression in a non-eve pattern. Incorporation of chromatin accessibility eliminates this inconsistency.