Cargando…
Knowledge-transfer learning for prediction of matrix metalloprotease substrate-cleavage sites
Matrix Metalloproteases (MMPs) are an important family of proteases that play crucial roles in key cellular and disease processes. Therefore, MMPs constitute important targets for drug design, development and delivery. Advanced proteomic technologies have identified type-specific target substrates;...
Autores principales: | Wang, Yanan, Song, Jiangning, Marquez-Lago, Tatiana T., Leier, André, Li, Chen, Lithgow, Trevor, Webb, Geoffrey I., Shen, Hong-Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515926/ https://www.ncbi.nlm.nih.gov/pubmed/28720874 http://dx.doi.org/10.1038/s41598-017-06219-7 |
Ejemplares similares
-
Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information
por: Li, Fuyi, et al.
Publicado: (2020) -
PhosTransfer: A Deep Transfer Learning Framework for Kinase-Specific Phosphorylation Site Prediction in Hierarchy
por: Xu, Ying, et al.
Publicado: (2020) -
PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection
por: Song, Jiangning, et al.
Publicado: (2017) -
BastionHub: a universal platform for integrating and analyzing substrates secreted by Gram-negative bacteria
por: Wang, Jiawei, et al.
Publicado: (2020) -
iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites
por: Song, Jiangning, et al.
Publicado: (2018)