Cargando…
Feature selective temporal prediction of Alzheimer's disease progression using hippocampus surface morphometry
INTRODUCTION: Prediction of Alzheimer's disease (AD) progression based on baseline measures allows us to understand disease progression and has implications in decisions concerning treatment strategy. To this end, we combine a predictive multi‐task machine learning method (cFSGL) with a novel M...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516607/ https://www.ncbi.nlm.nih.gov/pubmed/28729939 http://dx.doi.org/10.1002/brb3.733 |