Cargando…
A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy
BACKGROUND: Single-particle cryo-electron microscopy (cryo-EM) has become a mainstream tool for the structural determination of biological macromolecular complexes. However, high-resolution cryo-EM reconstruction often requires hundreds of thousands of single-particle images. Particle extraction fro...
Autores principales: | Zhu, Yanan, Ouyang, Qi, Mao, Youdong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5521087/ https://www.ncbi.nlm.nih.gov/pubmed/28732461 http://dx.doi.org/10.1186/s12859-017-1757-y |
Ejemplares similares
-
DeepCryoPicker: fully automated deep neural network for single protein particle picking in cryo-EM
por: Al-Azzawi, Adil, et al.
Publicado: (2020) -
DRPnet: automated particle picking in cryo-electron micrographs using deep regression
por: Nguyen, Nguyen Phuoc, et al.
Publicado: (2021) -
Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs
por: Bepler, Tristan, et al.
Publicado: (2019) -
Cryo-laser scanning confocal microscopy of diffusible plant compounds
por: Vidot, Kevin, et al.
Publicado: (2018) -
Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning
por: Wu, Jiayi, et al.
Publicado: (2017)