Cargando…
GSPE reduces lead-induced oxidative stress by activating the Nrf2 pathway and suppressing miR153 and GSK-3β in rat kidney
Lead (Pb) is a global environmental health hazard that leads to nephrotoxicity. However, the effective treatment of Pb-induced nephrotoxicity remains elusive. Grape seed procyanidin extract (GSPE) has beneficial properties for multiple biological functions. Therefore, the present study investigated...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522062/ https://www.ncbi.nlm.nih.gov/pubmed/28178683 http://dx.doi.org/10.18632/oncotarget.15033 |
Sumario: | Lead (Pb) is a global environmental health hazard that leads to nephrotoxicity. However, the effective treatment of Pb-induced nephrotoxicity remains elusive. Grape seed procyanidin extract (GSPE) has beneficial properties for multiple biological functions. Therefore, the present study investigated whether GSPE reduced Pb-induced nephrotoxicity as well as the protective mechanism of GSPE in a well-established 35-day Pb induced nephrotoxicity rat model. The results showed that GSPE normalized Pb-induced oxidative stress, histological damage, inflammatory, apoptosis, and changes of miR153 and glycogen synthase kinase 3β (GSK-3β) levels in rat kidney. Moreover, GSPE enhanced the induction of phase II detoxifying enzymes (heme oxygenase-1 and NAD(P)H quinone oxidoreductase 1) by increasing nuclear factor-erythroid-2-related factor 2 (Nrf2) expression. This study identifies for the first time that Pb-induced oxidative stress in rat kidney is attenuated by GSPE treatment via activating Nrf2 signaling pathway and suppressing miR153 and GSK-3β. Nrf2 signaling provides a new therapeutic target for renal injury induced by Pb, and GSPE could be a potential natural agent to protect against Pb-induced nephrotoxicity. |
---|