Cargando…
Activation of Dinitrogen as A Dipolarophile in 1,3-Dipolar Cycloadditions: A Theoretical Study Using Nitrile Imines as “Octet” 1,3-Dipoles
Theoretical calculations at the G4MP2 level of theory demonstrate that it is possible to activate dinitrogen to make it react in dipolar cycloadditions using neutral beryllium derivatives and other neutral metallic compounds. For the particular case of beryllium, the barrier decreases more than 40 k...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522451/ https://www.ncbi.nlm.nih.gov/pubmed/28733626 http://dx.doi.org/10.1038/s41598-017-05708-z |
Sumario: | Theoretical calculations at the G4MP2 level of theory demonstrate that it is possible to activate dinitrogen to make it react in dipolar cycloadditions using neutral beryllium derivatives and other neutral metallic compounds. For the particular case of beryllium, the barrier decreases more than 40 kJ·mol(–1) with respect to the non-catalysed reaction. The activation achieved is lower than using diazonium salts (models of protonated N(2)), but still in a range that can be experimentally attainable. |
---|