Cargando…
A QSTR-Based Expert System to Predict Sweetness of Molecules
This work describes a novel approach based on advanced molecular similarity to predict the sweetness of chemicals. The proposed Quantitative Structure-Taste Relationship (QSTR) model is an expert system developed keeping in mind the five principles defined by the Organization for Economic Co-operati...
Autores principales: | Rojas, Cristian, Todeschini, Roberto, Ballabio, Davide, Mauri, Andrea, Consonni, Viviana, Tripaldi, Piercosimo, Grisoni, Francesca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524730/ https://www.ncbi.nlm.nih.gov/pubmed/28791285 http://dx.doi.org/10.3389/fchem.2017.00053 |
Ejemplares similares
-
Mixtures, metabolites, ionic liquids: a new measure to evaluate similarity between complex chemical systems
por: Mauri, Andrea, et al.
Publicado: (2016) -
In Silico Prediction of Cytochrome P450-Drug Interaction: QSARs for CYP3A4 and CYP2C9
por: Nembri, Serena, et al.
Publicado: (2016) -
Comparison of Different Approaches to Define the Applicability Domain of QSAR Models
por: Sahigara, Faizan, et al.
Publicado: (2012) -
Defining a novel k-nearest neighbours approach to assess the applicability domain of a QSAR model for reliable predictions
por: Sahigara, Faizan, et al.
Publicado: (2013) -
Consensus versus Individual QSARs in Classification:
Comparison on a Large-Scale Case Study
por: Valsecchi, Cecile, et al.
Publicado: (2020)