Cargando…

Let-7 microRNA-dependent control of leukotriene signaling regulates the transition of hematopoietic niche in mice

Hematopoietic stem and progenitor cells arise from the vascular endothelium of the dorsal aorta and subsequently switch niche to the fetal liver through unknown mechanisms. Here we report that vascular endothelium-specific deletion of mouse Drosha (Drosha (cKO)), an enzyme essential for microRNA bio...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Xuan, Hawkins, John S., Lee, Jerry, Lizama, Carlos O., Bos, Frank L., Zape, Joan P., Ghatpande, Prajakta, Peng, Yongbo, Louie, Justin, Lagna, Giorgio, Zovein, Ann C., Hata, Akiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5527007/
https://www.ncbi.nlm.nih.gov/pubmed/28743859
http://dx.doi.org/10.1038/s41467-017-00137-y
Descripción
Sumario:Hematopoietic stem and progenitor cells arise from the vascular endothelium of the dorsal aorta and subsequently switch niche to the fetal liver through unknown mechanisms. Here we report that vascular endothelium-specific deletion of mouse Drosha (Drosha (cKO)), an enzyme essential for microRNA biogenesis, leads to anemia and death. A similar number of hematopoietic stem and progenitor cells emerge from Drosha-deficient and control vascular endothelium, but Drosha (cKO)-derived hematopoietic stem and progenitor cells accumulate in the dorsal aorta and fail to colonize the fetal liver. Depletion of the let-7 family of microRNAs is a primary cause of this defect, as it leads to activation of leukotriene B4 signaling and induction of the α4β1 integrin cell adhesion complex in hematopoietic stem and progenitor cells. Inhibition of leukotriene B4 or integrin rescues maturation and migration of Drosha (cKO) hematopoietic stem and progenitor cells to the fetal liver, while it hampers hematopoiesis in wild-type animals. Our study uncovers a previously undefined role of innate leukotriene B4 signaling as a gatekeeper of the hematopoietic niche transition.