Cargando…
Natural variation of macrophage activation as disease-relevant phenotype predictive of inflammation and cancer survival
Although mouse models exist for many immune-based diseases, the clinical translation remains challenging. Most basic and translational studies utilize only a single inbred mouse strain. However, basal and diseased immune states in humans show vast inter-individual variability. Here, focusing on macr...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5527282/ https://www.ncbi.nlm.nih.gov/pubmed/28737175 http://dx.doi.org/10.1038/ncomms16041 |
Sumario: | Although mouse models exist for many immune-based diseases, the clinical translation remains challenging. Most basic and translational studies utilize only a single inbred mouse strain. However, basal and diseased immune states in humans show vast inter-individual variability. Here, focusing on macrophage responses to lipopolysaccharide (LPS), we use the hybrid mouse diversity panel (HMDP) of 83 inbred strains as a surrogate for human natural immune variation. Since conventional bioinformatics fail to analyse a population spectrum, we highlight how gene signatures for LPS responsiveness can be derived based on an Interleukin-12β and arginase expression ratio. Compared to published signatures, these gene markers are more robust to identify susceptibility or resilience to several macrophage-related disorders in humans, including survival prediction across many tumours. This study highlights natural activation diversity as a disease-relevant dimension in macrophage biology, and suggests the HMDP as a viable tool to increase translatability of mouse data to clinical settings. |
---|