Cargando…

DNA-PKcs controls calcineurin mediated IL-2 production in T lymphocytes

Loss of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity in mammals results in severe combined immuno-deficiency (SCID). This SCID phenotype has been postulated to be due solely to the function of DNA-PKcs in V(D)J recombination, a process critical for lymphocyte maturation. Howeve...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim Wiese, Ara, Schluterman Burdine, Marie, Turnage, Richard H., Tackett, Alan J., Burdine, Lyle J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5531461/
https://www.ncbi.nlm.nih.gov/pubmed/28750002
http://dx.doi.org/10.1371/journal.pone.0181608
Descripción
Sumario:Loss of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity in mammals results in severe combined immuno-deficiency (SCID). This SCID phenotype has been postulated to be due solely to the function of DNA-PKcs in V(D)J recombination, a process critical for lymphocyte maturation. However; we show that DNA-PKcs is required for IL-2 production via regulation of the calcineurin signaling pathway. Reducing DNA-PKcs activity in activated T cells either by shRNA or an inhibitor significantly reduced IL-2 production by blocking calcineurin activity and the translocation of NFAT into the nucleus. Additionally, we show that DNA-PKcs exerts its effect on calcineurin by altering the expression of the endogenous calcineurin inhibitor Cabin1 through activation of the kinase CHK2, a known Cabin1 regulator. The discovery of DNA-PKcs as a potent regulator of IL-2 production will drive continued investigation of small molecule inhibition of this enzyme within the clinic.