Cargando…
ShadowY: a dark yellow fluorescent protein for FLIM-based FRET measurement
Fluorescence lifetime imaging microscopy (FLIM)-based Förster resonance energy transfer (FRET) measurement (FLIM-FRET) is one of the powerful methods for imaging of intracellular protein activities such as protein–protein interactions and conformational changes. Here, using saturation mutagenesis, w...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5533704/ https://www.ncbi.nlm.nih.gov/pubmed/28754922 http://dx.doi.org/10.1038/s41598-017-07002-4 |
Sumario: | Fluorescence lifetime imaging microscopy (FLIM)-based Förster resonance energy transfer (FRET) measurement (FLIM-FRET) is one of the powerful methods for imaging of intracellular protein activities such as protein–protein interactions and conformational changes. Here, using saturation mutagenesis, we developed a dark yellow fluorescent protein named ShadowY that can serve as an acceptor for FLIM-FRET. ShadowY is spectrally similar to the previously reported dark YFP but has a much smaller quantum yield, greater extinction coefficient, and superior folding property. When ShadowY was paired with mEGFP or a Clover mutant (Clover(T153M/F223R)) and applied to a single-molecule FRET sensor to monitor a light-dependent conformational change of the light-oxygen-voltage domain 2 (LOV2) in HeLa cells, we observed a large FRET signal change with low cell-to-cell variability, allowing for precise measurement of individual cell responses. In addition, an application of ShadowY to a separate-type Ras FRET sensor revealed an EGF-dependent large FRET signal increase. Thus, ShadowY in combination with mEGFP or Clover(T153M/F223R) is a promising FLIM-FRET acceptor. |
---|