Cargando…
TEPAPA: a novel in silico feature learning pipeline for mining prognostic and associative factors from text-based electronic medical records
Vast amounts of clinically relevant text-based variables lie undiscovered and unexploited in electronic medical records (EMR). To exploit this untapped resource, and thus facilitate the discovery of informative covariates from unstructured clinical narratives, we have built a novel computational pip...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537364/ https://www.ncbi.nlm.nih.gov/pubmed/28761061 http://dx.doi.org/10.1038/s41598-017-07111-0 |