Cargando…
TEPAPA: a novel in silico feature learning pipeline for mining prognostic and associative factors from text-based electronic medical records
Vast amounts of clinically relevant text-based variables lie undiscovered and unexploited in electronic medical records (EMR). To exploit this untapped resource, and thus facilitate the discovery of informative covariates from unstructured clinical narratives, we have built a novel computational pip...
Autores principales: | Lin, Frank Po-Yen, Pokorny, Adrian, Teng, Christina, Epstein, Richard J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537364/ https://www.ncbi.nlm.nih.gov/pubmed/28761061 http://dx.doi.org/10.1038/s41598-017-07111-0 |
Ejemplares similares
-
Empirical advances with text mining of electronic health records
por: Delespierre, T., et al.
Publicado: (2017) -
Automated Classification of Alcohol Use by Text Mining of Electronic
Medical Records
por: Lix, Lisa, et al.
Publicado: (2017) -
Data Processing and Text Mining Technologies on Electronic Medical Records: A Review
por: Sun, Wencheng, et al.
Publicado: (2018) -
Validation of an Improved Computer-Assisted Technique for Mining Free-Text Electronic Medical Records
por: Duz, Marco, et al.
Publicado: (2017) -
LAITOR4HPC: A text mining pipeline based on HPC for building interaction networks
por: Piereck, Bruna, et al.
Publicado: (2020)