Cargando…

Discovery of Novel Allopurinol Derivatives with Anticancer Activity and Attenuated Xanthine Oxidase Inhibition

A series of pyrazolo[3,4-d]pyrimidine derivatives related to allopurinol has been synthesized and evaluated for its cytotoxicity against a panel of three cancer cell lines as well as its xanthine oxidase (XOD) inhibitory activities. Among them, compound 4 showed potent cytotoxicity with IC(50) value...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yong, Cao, Ting-Ting, Guo, Shanchun, Zhong, Qiu, Li, Cai-Hu, Li, Ying, Dong, Lin, Zheng, Shilong, Wang, Guangdi, Yin, Shu-Fan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538589/
https://www.ncbi.nlm.nih.gov/pubmed/27331805
http://dx.doi.org/10.3390/molecules21060771
Descripción
Sumario:A series of pyrazolo[3,4-d]pyrimidine derivatives related to allopurinol has been synthesized and evaluated for its cytotoxicity against a panel of three cancer cell lines as well as its xanthine oxidase (XOD) inhibitory activities. Among them, compound 4 showed potent cytotoxicity with IC(50) values of 25.5 and 35.2 μM against human hepatoma carcinoma cell lines, BEL-7402 and SMMC-7221, respectively. The anticancer activity of 4 was comparable to that of Tanespimycin (17-N-allylamino-17-demethoxy geldanamycin, 17-AAG) that inhibited the growth of BEL-7402 and SMMC-7221 cells at IC(50) values of 12.4 and 9.85 μM, respectively. However, unlike allopurinol, which is also a strong inhibitor of XOD, compound 4 is a much weaker XOD inhibitor, suggesting that the anticancer activities of the allopurinol derivatives may not be associated with XOD inhibition. Moreover, the cytotoxicity of 4 toward normal cells is significantly lower than that of 17-AAG, making 4 a promising lead compound for further optimization of structure-activity relationships that may lead to anticancer agents of clinical utility.