Cargando…
Discovery of novel therapeutic properties of drugs from transcriptional responses based on multi-label classification
Drug repositioning strategies have improved substantially in recent years. At present, two advances are poised to facilitate new strategies. First, the LINCS project can provide rich transcriptome data that reflect the responses of cells upon exposure to various drugs. Second, machine learning algor...
Autores principales: | Xie, Lingwei, He, Song, Wen, Yuqi, Bo, Xiaochen, Zhang, Zhongnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541064/ https://www.ncbi.nlm.nih.gov/pubmed/28769090 http://dx.doi.org/10.1038/s41598-017-07705-8 |
Ejemplares similares
-
Deep learning-based transcriptome data classification for drug-target interaction prediction
por: Xie, Lingwei, et al.
Publicado: (2018) -
Drug-Target Interaction Prediction Based on Adversarial Bayesian Personalized Ranking
por: Ye, Yihua, et al.
Publicado: (2021) -
MOCSS: Multi-omics data clustering and cancer subtyping via shared and specific representation learning
por: Chen, Yuxin, et al.
Publicado: (2023) -
A benchmark study of deep learning-based multi-omics data fusion methods for cancer
por: Leng, Dongjin, et al.
Publicado: (2022) -
Label recovery and label correlation co-learning for multi-view multi-label classification with incomplete labels
por: He, Zhi-Fen, et al.
Publicado: (2022)