Cargando…

Hypertrophic differentiation of mesenchymal stem cells is suppressed by xanthotoxin via the p38-MAPK/HDAC4 pathway

Chondrocyte hypertrophy is a physiological process in endochondral ossification. However, the hypertrophic-like alterations of chondrocytes at the articular surface may result in osteoarthritis (OA). In addition, the generation of fibrocartilage with a decreased biological function in tissue enginee...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Zhen, Bai, Yun, Liu, Chuan, Dou, Ce, Li, Jianmei, Xiang, Junyu, Zhao, Chunrong, Xie, Zhao, Xiang, Qiang, Dong, Shiwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548016/
https://www.ncbi.nlm.nih.gov/pubmed/28677757
http://dx.doi.org/10.3892/mmr.2017.6886
Descripción
Sumario:Chondrocyte hypertrophy is a physiological process in endochondral ossification. However, the hypertrophic-like alterations of chondrocytes at the articular surface may result in osteoarthritis (OA). In addition, the generation of fibrocartilage with a decreased biological function in tissue engineered cartilage, has been attributed to chondrocyte hypertrophy. Therefore, suppressing chondrocyte hypertrophy in OA and the associated regeneration of non-active cartilage is of primary concern. The present study examined the effects of xanthotoxin (XAT), which is classified as a furanocoumarin, on chondrocyte hypertrophic differentiation of mesenchymal stem cells. Following XAT treatment, the expression levels of genes associated with chondrocyte hypertrophy were detected via immunohistochemistry, western blotting and reverse transcription-quantitative polymerase chain reaction. The results revealed that XAT inhibited the expression of various chondrocyte hypertrophic markers, including runt related transcription factor 2 (Runx2), matrix metalloproteinase 13 and collagen type X α1 chain. Further exploration indicated that XAT reduced the activation of p38-mitogen activated protein kinase and then increased the expression of histone deacetylase 4 to suppress Runx2. The findings indicated that XAT maintained the chondrocyte phenotype in regenerated cartilage and therefore may exhibit promise as a potential drug for the treatment of OA in the future.