Cargando…
A random forest classifier for detecting rare variants in NGS data from viral populations
We propose a random forest classifier for detecting rare variants from sequencing errors in Next Generation Sequencing (NGS) data from viral populations. The method utilizes counts of varying length of k-mers from the reads of a viral population to train a Random forest classifier, called MultiRes,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548337/ https://www.ncbi.nlm.nih.gov/pubmed/28819548 http://dx.doi.org/10.1016/j.csbj.2017.07.001 |