Cargando…

A novel region in the Ca(V)2.1 α(1) subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone

In central nervous system (CNS) synapses, action potential-evoked neurotransmitter release is principally mediated by Ca(V)2.1 calcium channels (Ca(V)2.1) and is highly dependent on the physical distance between Ca(V)2.1 and synaptic vesicles (coupling). Although various active zone proteins are pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Lübbert, Matthias, Goral, R Oliver, Satterfield, Rachel, Putzke, Travis, van den Maagdenberg, Arn MJM, Kamasawa, Naomi, Young, Samuel M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548488/
https://www.ncbi.nlm.nih.gov/pubmed/28786379
http://dx.doi.org/10.7554/eLife.28412
_version_ 1783255833920929792
author Lübbert, Matthias
Goral, R Oliver
Satterfield, Rachel
Putzke, Travis
van den Maagdenberg, Arn MJM
Kamasawa, Naomi
Young, Samuel M
author_facet Lübbert, Matthias
Goral, R Oliver
Satterfield, Rachel
Putzke, Travis
van den Maagdenberg, Arn MJM
Kamasawa, Naomi
Young, Samuel M
author_sort Lübbert, Matthias
collection PubMed
description In central nervous system (CNS) synapses, action potential-evoked neurotransmitter release is principally mediated by Ca(V)2.1 calcium channels (Ca(V)2.1) and is highly dependent on the physical distance between Ca(V)2.1 and synaptic vesicles (coupling). Although various active zone proteins are proposed to control coupling and abundance of Ca(V)2.1 through direct interactions with the Ca(V)2.1 α1 subunit C-terminus at the active zone, the role of these interaction partners is controversial. To define the intrinsic motifs that regulate coupling, we expressed mutant Ca(V)2.1 α(1) subunits on a Ca(V)2.1 null background at the calyx of Held presynaptic terminal. Our results identified a region that directly controlled fast synaptic vesicle release and vesicle docking at the active zone independent of Ca(V)2.1 abundance. In addition, proposed individual direct interactions with active zone proteins are insufficient for Ca(V)2.1 abundance and coupling. Therefore, our work advances our molecular understanding of Ca(V)2.1 regulation of neurotransmitter release in mammalian CNS synapses. DOI: http://dx.doi.org/10.7554/eLife.28412.001
format Online
Article
Text
id pubmed-5548488
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-55484882017-08-09 A novel region in the Ca(V)2.1 α(1) subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone Lübbert, Matthias Goral, R Oliver Satterfield, Rachel Putzke, Travis van den Maagdenberg, Arn MJM Kamasawa, Naomi Young, Samuel M eLife Biophysics and Structural Biology In central nervous system (CNS) synapses, action potential-evoked neurotransmitter release is principally mediated by Ca(V)2.1 calcium channels (Ca(V)2.1) and is highly dependent on the physical distance between Ca(V)2.1 and synaptic vesicles (coupling). Although various active zone proteins are proposed to control coupling and abundance of Ca(V)2.1 through direct interactions with the Ca(V)2.1 α1 subunit C-terminus at the active zone, the role of these interaction partners is controversial. To define the intrinsic motifs that regulate coupling, we expressed mutant Ca(V)2.1 α(1) subunits on a Ca(V)2.1 null background at the calyx of Held presynaptic terminal. Our results identified a region that directly controlled fast synaptic vesicle release and vesicle docking at the active zone independent of Ca(V)2.1 abundance. In addition, proposed individual direct interactions with active zone proteins are insufficient for Ca(V)2.1 abundance and coupling. Therefore, our work advances our molecular understanding of Ca(V)2.1 regulation of neurotransmitter release in mammalian CNS synapses. DOI: http://dx.doi.org/10.7554/eLife.28412.001 eLife Sciences Publications, Ltd 2017-08-08 /pmc/articles/PMC5548488/ /pubmed/28786379 http://dx.doi.org/10.7554/eLife.28412 Text en © 2017, Lübbert et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Biophysics and Structural Biology
Lübbert, Matthias
Goral, R Oliver
Satterfield, Rachel
Putzke, Travis
van den Maagdenberg, Arn MJM
Kamasawa, Naomi
Young, Samuel M
A novel region in the Ca(V)2.1 α(1) subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone
title A novel region in the Ca(V)2.1 α(1) subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone
title_full A novel region in the Ca(V)2.1 α(1) subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone
title_fullStr A novel region in the Ca(V)2.1 α(1) subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone
title_full_unstemmed A novel region in the Ca(V)2.1 α(1) subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone
title_short A novel region in the Ca(V)2.1 α(1) subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone
title_sort novel region in the ca(v)2.1 α(1) subunit c-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone
topic Biophysics and Structural Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548488/
https://www.ncbi.nlm.nih.gov/pubmed/28786379
http://dx.doi.org/10.7554/eLife.28412
work_keys_str_mv AT lubbertmatthias anovelregioninthecav21a1subunitcterminusregulatesfastsynapticvesiclefusionandvesicledockingatthemammalianpresynapticactivezone
AT goralroliver anovelregioninthecav21a1subunitcterminusregulatesfastsynapticvesiclefusionandvesicledockingatthemammalianpresynapticactivezone
AT satterfieldrachel anovelregioninthecav21a1subunitcterminusregulatesfastsynapticvesiclefusionandvesicledockingatthemammalianpresynapticactivezone
AT putzketravis anovelregioninthecav21a1subunitcterminusregulatesfastsynapticvesiclefusionandvesicledockingatthemammalianpresynapticactivezone
AT vandenmaagdenbergarnmjm anovelregioninthecav21a1subunitcterminusregulatesfastsynapticvesiclefusionandvesicledockingatthemammalianpresynapticactivezone
AT kamasawanaomi anovelregioninthecav21a1subunitcterminusregulatesfastsynapticvesiclefusionandvesicledockingatthemammalianpresynapticactivezone
AT youngsamuelm anovelregioninthecav21a1subunitcterminusregulatesfastsynapticvesiclefusionandvesicledockingatthemammalianpresynapticactivezone
AT lubbertmatthias novelregioninthecav21a1subunitcterminusregulatesfastsynapticvesiclefusionandvesicledockingatthemammalianpresynapticactivezone
AT goralroliver novelregioninthecav21a1subunitcterminusregulatesfastsynapticvesiclefusionandvesicledockingatthemammalianpresynapticactivezone
AT satterfieldrachel novelregioninthecav21a1subunitcterminusregulatesfastsynapticvesiclefusionandvesicledockingatthemammalianpresynapticactivezone
AT putzketravis novelregioninthecav21a1subunitcterminusregulatesfastsynapticvesiclefusionandvesicledockingatthemammalianpresynapticactivezone
AT vandenmaagdenbergarnmjm novelregioninthecav21a1subunitcterminusregulatesfastsynapticvesiclefusionandvesicledockingatthemammalianpresynapticactivezone
AT kamasawanaomi novelregioninthecav21a1subunitcterminusregulatesfastsynapticvesiclefusionandvesicledockingatthemammalianpresynapticactivezone
AT youngsamuelm novelregioninthecav21a1subunitcterminusregulatesfastsynapticvesiclefusionandvesicledockingatthemammalianpresynapticactivezone