Cargando…

The proteasome deubiquitinase inhibitor b-AP15 enhances DR5 activation-induced apoptosis through stabilizing DR5

b-AP15 and its derivatives block proteasome deubiquitinase (DUB) activity and have been developed and tested in the clinic as potential cancer therapeutic agents. b-AP15 induces apoptosis in cancer cells, but the underlying mechanisms are largely undefined. The current study focuses on studying the...

Descripción completa

Detalles Bibliográficos
Autores principales: Oh, You-Take, Deng, Liang, Deng, Jiusheng, Sun, Shi-Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556018/
https://www.ncbi.nlm.nih.gov/pubmed/28808321
http://dx.doi.org/10.1038/s41598-017-08424-w
Descripción
Sumario:b-AP15 and its derivatives block proteasome deubiquitinase (DUB) activity and have been developed and tested in the clinic as potential cancer therapeutic agents. b-AP15 induces apoptosis in cancer cells, but the underlying mechanisms are largely undefined. The current study focuses on studying the modulatory effects of b-AP15 on death receptor 5 (DR5) levels and DR5 activation-induced apoptosis as well as on understanding the underlying mechanisms. Treatment with b-AP15 potently increased DR5 levels including cell surface DR5 in different cancer cell lines with limited or no effects on the levels of other related proteins including DR4, c-FLIP, FADD, and caspase-8. b-AP15 substantially slowed the degradation of DR5, suggesting that it stabilizes DR5. Moreover, b-AP15 effectively augmented apoptosis when combined with TRAIL or the DR5 agonistic antibody AMG655; these effects are DR5-dependent because DR5 deficiency abolished the ability of b-AP15 to enhance TRAIL- or AMG655-induced apoptosis. Therefore, it is clear that b-AP15, and possibly its derivatives, can stabilize DR5 and increase functional cell surface DR5 levels, resulting in enhancement of DR5 activation-induced apoptosis. Our findings suggest that b-AP15 and its derivatives may have potential in sensitizing cancer cells to DR5 activation-based cancer therapy.