Cargando…

Tumor microenvironment conditions alter Akt and Na(+)/H(+) exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer

BACKGROUND: Chronic angiogenesis is a hallmark of most tumors and takes place in a hostile tumor microenvironment (TME) characterized by hypoxia, low nutrient and glucose levels, elevated lactate and low pH. Despite this, most studies addressing angiogenic signaling use hypoxia as a proxy for tumor...

Descripción completa

Detalles Bibliográficos
Autores principales: Pedersen, A. K., Mendes Lopes de Melo, J., Mørup, N., Tritsaris, K., Pedersen, S. F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556346/
https://www.ncbi.nlm.nih.gov/pubmed/28806945
http://dx.doi.org/10.1186/s12885-017-3532-x
_version_ 1783257051622801408
author Pedersen, A. K.
Mendes Lopes de Melo, J.
Mørup, N.
Tritsaris, K.
Pedersen, S. F.
author_facet Pedersen, A. K.
Mendes Lopes de Melo, J.
Mørup, N.
Tritsaris, K.
Pedersen, S. F.
author_sort Pedersen, A. K.
collection PubMed
description BACKGROUND: Chronic angiogenesis is a hallmark of most tumors and takes place in a hostile tumor microenvironment (TME) characterized by hypoxia, low nutrient and glucose levels, elevated lactate and low pH. Despite this, most studies addressing angiogenic signaling use hypoxia as a proxy for tumor conditions. Here, we compared the effects of hypoxia and TME conditions on regulation of the Na(+)/H(+) exchanger NHE1, Ser/Thr kinases Akt1–3, and downstream effectors in endothelial cells. METHODS: Human umbilical vein endothelial cells (HUVEC) and Ea.hy926 endothelial cells were exposed to simulated TME (1% hypoxia, low serum, glucose, pH, high lactate) or 1% hypoxia for 24 or 48 h, with or without NHE1 inhibition or siRNA-mediated knockdown. mRNA and protein levels of NHE1, Akt1–3, and downstream effectors were assessed by qPCR and Western blotting, vascular endothelial growth factor (VEGF) release by ELISA, and motility by scratch assay. RESULTS: Within 24 h, HIF-1α level and VEGF mRNA level were increased robustly by TME and modestly by hypoxia alone. The NHE1 mRNA level was decreased by both hypoxia and TME, and NHE1 protein was reduced by TME in Ea.hy926 cells. Akt1–3 mRNA was detected in HUVEC and Ea.hy926 cells, Akt1 most abundantly. Akt1 protein expression was reduced by TME yet unaffected by hypoxia, while Akt phosphorylation was increased by TME. The Akt loss was partly reversed by MCF-7 human breast cancer cell conditioned medium, suggesting that in vivo, the cancer cell secretome may compensate for adverse effects of TME on endothelial cells. TME, yet not hypoxia, reduced p70S6 kinase activity and ribosomal protein S6 phosphorylation and increased eIF2α phosphorylation, consistent with inhibition of protein translation. Finally, TME reduced Retinoblastoma protein phosphorylation and induced poly-ADP-ribose polymerase (PARP) cleavage consistent with inhibition of proliferation and induction of apoptosis. NHE1 knockdown, mimicking the effect of TME on NHE1 expression, reduced Ea.hy926 migration. TME effects on HIF-1α, VEGF, Akt, translation, proliferation or apoptosis markers were unaffected by NHE1 knockdown/inhibition. CONCLUSIONS: NHE1 and Akt are downregulated by TME conditions, more potently than by hypoxia alone. This inhibits endothelial cell migration and growth in a manner likely modulated by the cancer cell secretome. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-017-3532-x) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5556346
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-55563462017-08-16 Tumor microenvironment conditions alter Akt and Na(+)/H(+) exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer Pedersen, A. K. Mendes Lopes de Melo, J. Mørup, N. Tritsaris, K. Pedersen, S. F. BMC Cancer Research Article BACKGROUND: Chronic angiogenesis is a hallmark of most tumors and takes place in a hostile tumor microenvironment (TME) characterized by hypoxia, low nutrient and glucose levels, elevated lactate and low pH. Despite this, most studies addressing angiogenic signaling use hypoxia as a proxy for tumor conditions. Here, we compared the effects of hypoxia and TME conditions on regulation of the Na(+)/H(+) exchanger NHE1, Ser/Thr kinases Akt1–3, and downstream effectors in endothelial cells. METHODS: Human umbilical vein endothelial cells (HUVEC) and Ea.hy926 endothelial cells were exposed to simulated TME (1% hypoxia, low serum, glucose, pH, high lactate) or 1% hypoxia for 24 or 48 h, with or without NHE1 inhibition or siRNA-mediated knockdown. mRNA and protein levels of NHE1, Akt1–3, and downstream effectors were assessed by qPCR and Western blotting, vascular endothelial growth factor (VEGF) release by ELISA, and motility by scratch assay. RESULTS: Within 24 h, HIF-1α level and VEGF mRNA level were increased robustly by TME and modestly by hypoxia alone. The NHE1 mRNA level was decreased by both hypoxia and TME, and NHE1 protein was reduced by TME in Ea.hy926 cells. Akt1–3 mRNA was detected in HUVEC and Ea.hy926 cells, Akt1 most abundantly. Akt1 protein expression was reduced by TME yet unaffected by hypoxia, while Akt phosphorylation was increased by TME. The Akt loss was partly reversed by MCF-7 human breast cancer cell conditioned medium, suggesting that in vivo, the cancer cell secretome may compensate for adverse effects of TME on endothelial cells. TME, yet not hypoxia, reduced p70S6 kinase activity and ribosomal protein S6 phosphorylation and increased eIF2α phosphorylation, consistent with inhibition of protein translation. Finally, TME reduced Retinoblastoma protein phosphorylation and induced poly-ADP-ribose polymerase (PARP) cleavage consistent with inhibition of proliferation and induction of apoptosis. NHE1 knockdown, mimicking the effect of TME on NHE1 expression, reduced Ea.hy926 migration. TME effects on HIF-1α, VEGF, Akt, translation, proliferation or apoptosis markers were unaffected by NHE1 knockdown/inhibition. CONCLUSIONS: NHE1 and Akt are downregulated by TME conditions, more potently than by hypoxia alone. This inhibits endothelial cell migration and growth in a manner likely modulated by the cancer cell secretome. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-017-3532-x) contains supplementary material, which is available to authorized users. BioMed Central 2017-08-14 /pmc/articles/PMC5556346/ /pubmed/28806945 http://dx.doi.org/10.1186/s12885-017-3532-x Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Pedersen, A. K.
Mendes Lopes de Melo, J.
Mørup, N.
Tritsaris, K.
Pedersen, S. F.
Tumor microenvironment conditions alter Akt and Na(+)/H(+) exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer
title Tumor microenvironment conditions alter Akt and Na(+)/H(+) exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer
title_full Tumor microenvironment conditions alter Akt and Na(+)/H(+) exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer
title_fullStr Tumor microenvironment conditions alter Akt and Na(+)/H(+) exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer
title_full_unstemmed Tumor microenvironment conditions alter Akt and Na(+)/H(+) exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer
title_short Tumor microenvironment conditions alter Akt and Na(+)/H(+) exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer
title_sort tumor microenvironment conditions alter akt and na(+)/h(+) exchanger nhe1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556346/
https://www.ncbi.nlm.nih.gov/pubmed/28806945
http://dx.doi.org/10.1186/s12885-017-3532-x
work_keys_str_mv AT pedersenak tumormicroenvironmentconditionsalteraktandnahexchangernhe1expressioninendothelialcellsmorethanhypoxiaaloneimplicationsforendothelialcellfunctionincancer
AT mendeslopesdemeloj tumormicroenvironmentconditionsalteraktandnahexchangernhe1expressioninendothelialcellsmorethanhypoxiaaloneimplicationsforendothelialcellfunctionincancer
AT mørupn tumormicroenvironmentconditionsalteraktandnahexchangernhe1expressioninendothelialcellsmorethanhypoxiaaloneimplicationsforendothelialcellfunctionincancer
AT tritsarisk tumormicroenvironmentconditionsalteraktandnahexchangernhe1expressioninendothelialcellsmorethanhypoxiaaloneimplicationsforendothelialcellfunctionincancer
AT pedersensf tumormicroenvironmentconditionsalteraktandnahexchangernhe1expressioninendothelialcellsmorethanhypoxiaaloneimplicationsforendothelialcellfunctionincancer