Cargando…

Comparative composition, diversity, and abundance of oligosaccharides in early lactation milk from commercial dairy and beef cows

Prebiotics are nondigestible dietary ingredients, usually oligosaccharides (OS), that provide a health benefit to the host by directly modulating the gut microbiota. Although there is some information describing OS content in dairy-source milk, no information is available to describe the OS content...

Descripción completa

Detalles Bibliográficos
Autores principales: Sischo, William M., Short, Diana M., Geissler, Mareen, Bunyatratchata, Apichaya, Barile, Daniela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5557269/
https://www.ncbi.nlm.nih.gov/pubmed/28318588
http://dx.doi.org/10.3168/jds.2016-12388
Descripción
Sumario:Prebiotics are nondigestible dietary ingredients, usually oligosaccharides (OS), that provide a health benefit to the host by directly modulating the gut microbiota. Although there is some information describing OS content in dairy-source milk, no information is available to describe the OS content of beef-source milk. Given the different trait emphasis between dairy and beef for milk production and calf survivability, it is plausible that OS composition, diversity, and abundance differ between production types. The goal of this study was to compare OS in milk from commercial dairy and beef cows in early lactation. Early-lactation multiparous cows (5–12 d in milk) from 5 commercial Holstein dairy herds and 5 Angus or Angus hybrid beef herds were sampled once. Milk was obtained from each enrolled cow and frozen on the farm. Subsequently, each milk sample was assessed for total solids, pH, and OS content and relative abundance. Oligosaccharide diversity and abundance within and between samples was transformed through principal component analysis to reduce data complexity. Factors from principal component analysis were used to create similarity clusters, which were subsequently used in a multivariate logistic regression. In total, 30 OS were identified in early-lactation cow milk, including 21 distinct OS and 9 isomers with unique retention times. The majority of OS detected in the milk samples were present in all individual samples regardless of production type. Two clusters described distribution patterns of OS for the study sample; when median OS abundance was compared between the 2 clusters, we found that overall OS relative abundance was consistently greater in the cluster dominated by beef cows. For several of the structures, including those with known prebiotic effect, the difference in abundance was 2- to 4-fold greater in the beef-dominated cluster. Assuming that beef OS content in milk is the gold standard for cattle, it is likely that preweaning dairy calves are deprived of dietary-source OS. Although supplementing rations with OS is an approach to rectify this deficiency, understanding the health and productivity effects of improving OS abundance being fed to preweaning calves is a necessary next step before recommending supplementation. These studies should account for the observation that OS products are variable for both OS diversity and structural complexity, and some products may not be suitable as prebiotics.