Cargando…

A novel in vitro potency assay of antisera against Thai Naja kaouthia based on nicotinic acetylcholine receptor binding

Snake envenomation is an important medical problem. One of the hurdles in antivenom development is the in vivo assay of antivenom potency which is expensive, gives variable results and kills many animals. We report a novel in vitro assay involving the specific binding of the postsynaptic neurotoxins...

Descripción completa

Detalles Bibliográficos
Autores principales: Ratanabanangkoon, Kavi, Simsiriwong, Pavinee, Pruksaphon, Kritsada, Tan, Kae Yi, Eursakun, Sukanya, Tan, Choo Hock, Chantrathonkul, Bunkuea, Wongwadhunyoo, Wongsakorn, Youngchim, Sirida, Tan, Nget Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561211/
https://www.ncbi.nlm.nih.gov/pubmed/28819275
http://dx.doi.org/10.1038/s41598-017-08962-3
Descripción
Sumario:Snake envenomation is an important medical problem. One of the hurdles in antivenom development is the in vivo assay of antivenom potency which is expensive, gives variable results and kills many animals. We report a novel in vitro assay involving the specific binding of the postsynaptic neurotoxins (PSNTs) of elapid snakes with purified Torpedo californica nicotinic acetylcholine receptor (nAChR). The potency of an antivenom is determined by its antibody ability to bind and neutralize the PSNT, thus preventing it from binding to nAChR. The PSNT of Naja kaouthia (NK3) was immobilized on microtiter wells and nAChR was added to bind with it. The in vitro IC(50) of N. kaouthia venom that inhibited 50% of nAChR binding to the immobilized NK3 was determined. Varying concentrations of antisera against N. kaouthia were separately pre-incubated with 5xIC(50) of N. kaouthia venom. The remaining free NK3 were incubated with nAChR before adding to the NK3 coated plates. The in vitro and in vivo median effective ratio, ER(50)s of 12 batches of antisera showed correlation (R (2)) of 0.9809 (p < 0.0001). This in vitro assay should be applicable to antisera against other elapid venoms and should reduce the use of live animals and accelerate development of life-saving antivenoms.