Cargando…

Inhibition of the HDAC/Suv39/G9a pathway restores the expression of DNA damage-dependent major histocompatibility complex class I-related chain A and B in cancer cells

Immunotherapy is expected to be promising as a next generation cancer therapy. Immunoreceptors are often activated constitutively in cancer cells, however, such levels of ligand expression are not effectively recognized by the native immune system due to tumor microenvironmental adaptation. Studies...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakajima, Nakako Izumi, Niimi, Atsuko, Isono, Mayu, Oike, Takahiro, Sato, Hiro, Nakano, Takashi, Shibata, Atsushi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562072/
https://www.ncbi.nlm.nih.gov/pubmed/28677817
http://dx.doi.org/10.3892/or.2017.5773
_version_ 1783257914864041984
author Nakajima, Nakako Izumi
Niimi, Atsuko
Isono, Mayu
Oike, Takahiro
Sato, Hiro
Nakano, Takashi
Shibata, Atsushi
author_facet Nakajima, Nakako Izumi
Niimi, Atsuko
Isono, Mayu
Oike, Takahiro
Sato, Hiro
Nakano, Takashi
Shibata, Atsushi
author_sort Nakajima, Nakako Izumi
collection PubMed
description Immunotherapy is expected to be promising as a next generation cancer therapy. Immunoreceptors are often activated constitutively in cancer cells, however, such levels of ligand expression are not effectively recognized by the native immune system due to tumor microenvironmental adaptation. Studies have demonstrated that natural-killer group 2, member D (NKG2D), a major activating immunoreceptor, responds to DNA damage. The upregulation of major histocompatibility complex class I-related chain A and B (MICA/B) (members of NKG2D ligands) expression after DNA damage is associated with NK cell-mediated killing of cancer cells. However, the regulation of DNA damage-induced MICA/B expression has not been fully elucidated in the context of the types of cancer cell lines. In the present study, we found that MICA/B expression varied between cancer cell lines after DNA damage. Screening in terms of chromatin remodeling identified that inhibitors related to chromatin relaxation via post-translational modification on histone H3K9, i.e. HDAC, Suv39 or G9a inhibition, restored DNA damage-dependent MICA/B expression in insensitive cells. In addition, we revealed that the restored MICA/B expression was dependent on ATR as well as E2F1, a transcription factor. We further revealed that low-dose treatment of an HDAC inhibitor was sufficient to restore MICA/B expression in insensitive cells. Finally, we demonstrated that HDAC inhibition restored DNA damage-dependent cytotoxic NK activity against insensitive cells. Thus, the present study revealed that DNA damage-dependent MICA/B expression in insensitive cancer cells can be restored by chromatin relaxation via the HDAC/Suv39/G9a pathway. Collectively, manipulation of chromatin status by therapeutic cancer drugs may potentiate the antitumor effect by enhancing immune activation following radiotherapy and DNA damage-associated chemotherapy.
format Online
Article
Text
id pubmed-5562072
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-55620722017-11-02 Inhibition of the HDAC/Suv39/G9a pathway restores the expression of DNA damage-dependent major histocompatibility complex class I-related chain A and B in cancer cells Nakajima, Nakako Izumi Niimi, Atsuko Isono, Mayu Oike, Takahiro Sato, Hiro Nakano, Takashi Shibata, Atsushi Oncol Rep Articles Immunotherapy is expected to be promising as a next generation cancer therapy. Immunoreceptors are often activated constitutively in cancer cells, however, such levels of ligand expression are not effectively recognized by the native immune system due to tumor microenvironmental adaptation. Studies have demonstrated that natural-killer group 2, member D (NKG2D), a major activating immunoreceptor, responds to DNA damage. The upregulation of major histocompatibility complex class I-related chain A and B (MICA/B) (members of NKG2D ligands) expression after DNA damage is associated with NK cell-mediated killing of cancer cells. However, the regulation of DNA damage-induced MICA/B expression has not been fully elucidated in the context of the types of cancer cell lines. In the present study, we found that MICA/B expression varied between cancer cell lines after DNA damage. Screening in terms of chromatin remodeling identified that inhibitors related to chromatin relaxation via post-translational modification on histone H3K9, i.e. HDAC, Suv39 or G9a inhibition, restored DNA damage-dependent MICA/B expression in insensitive cells. In addition, we revealed that the restored MICA/B expression was dependent on ATR as well as E2F1, a transcription factor. We further revealed that low-dose treatment of an HDAC inhibitor was sufficient to restore MICA/B expression in insensitive cells. Finally, we demonstrated that HDAC inhibition restored DNA damage-dependent cytotoxic NK activity against insensitive cells. Thus, the present study revealed that DNA damage-dependent MICA/B expression in insensitive cancer cells can be restored by chromatin relaxation via the HDAC/Suv39/G9a pathway. Collectively, manipulation of chromatin status by therapeutic cancer drugs may potentiate the antitumor effect by enhancing immune activation following radiotherapy and DNA damage-associated chemotherapy. D.A. Spandidos 2017-08 2017-06-30 /pmc/articles/PMC5562072/ /pubmed/28677817 http://dx.doi.org/10.3892/or.2017.5773 Text en Copyright: © Nakajima et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Nakajima, Nakako Izumi
Niimi, Atsuko
Isono, Mayu
Oike, Takahiro
Sato, Hiro
Nakano, Takashi
Shibata, Atsushi
Inhibition of the HDAC/Suv39/G9a pathway restores the expression of DNA damage-dependent major histocompatibility complex class I-related chain A and B in cancer cells
title Inhibition of the HDAC/Suv39/G9a pathway restores the expression of DNA damage-dependent major histocompatibility complex class I-related chain A and B in cancer cells
title_full Inhibition of the HDAC/Suv39/G9a pathway restores the expression of DNA damage-dependent major histocompatibility complex class I-related chain A and B in cancer cells
title_fullStr Inhibition of the HDAC/Suv39/G9a pathway restores the expression of DNA damage-dependent major histocompatibility complex class I-related chain A and B in cancer cells
title_full_unstemmed Inhibition of the HDAC/Suv39/G9a pathway restores the expression of DNA damage-dependent major histocompatibility complex class I-related chain A and B in cancer cells
title_short Inhibition of the HDAC/Suv39/G9a pathway restores the expression of DNA damage-dependent major histocompatibility complex class I-related chain A and B in cancer cells
title_sort inhibition of the hdac/suv39/g9a pathway restores the expression of dna damage-dependent major histocompatibility complex class i-related chain a and b in cancer cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562072/
https://www.ncbi.nlm.nih.gov/pubmed/28677817
http://dx.doi.org/10.3892/or.2017.5773
work_keys_str_mv AT nakajimanakakoizumi inhibitionofthehdacsuv39g9apathwayrestorestheexpressionofdnadamagedependentmajorhistocompatibilitycomplexclassirelatedchainaandbincancercells
AT niimiatsuko inhibitionofthehdacsuv39g9apathwayrestorestheexpressionofdnadamagedependentmajorhistocompatibilitycomplexclassirelatedchainaandbincancercells
AT isonomayu inhibitionofthehdacsuv39g9apathwayrestorestheexpressionofdnadamagedependentmajorhistocompatibilitycomplexclassirelatedchainaandbincancercells
AT oiketakahiro inhibitionofthehdacsuv39g9apathwayrestorestheexpressionofdnadamagedependentmajorhistocompatibilitycomplexclassirelatedchainaandbincancercells
AT satohiro inhibitionofthehdacsuv39g9apathwayrestorestheexpressionofdnadamagedependentmajorhistocompatibilitycomplexclassirelatedchainaandbincancercells
AT nakanotakashi inhibitionofthehdacsuv39g9apathwayrestorestheexpressionofdnadamagedependentmajorhistocompatibilitycomplexclassirelatedchainaandbincancercells
AT shibataatsushi inhibitionofthehdacsuv39g9apathwayrestorestheexpressionofdnadamagedependentmajorhistocompatibilitycomplexclassirelatedchainaandbincancercells