Cargando…
ZNF131 suppresses centrosome fragmentation in glioblastoma stem-like cells through regulation of HAUS5
Zinc finger domain genes comprise ∼3% of the human genome, yet many of their functions remain unknown. Here we investigated roles for the vertebrate-specific BTB domain zinc finger gene ZNF131 in the context of human brain tumors. We report that ZNF131 is broadly required for Glioblastoma stem-like...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5564707/ https://www.ncbi.nlm.nih.gov/pubmed/28596487 http://dx.doi.org/10.18632/oncotarget.18153 |
_version_ | 1783258284376981504 |
---|---|
author | Ding, Yu Herman, Jacob A. Toledo, Chad M. Lang, Jackie M. Corrin, Philip Girard, Emily J. Basom, Ryan Delrow, Jeffrey J. Olson, James M. Paddison, Patrick J. |
author_facet | Ding, Yu Herman, Jacob A. Toledo, Chad M. Lang, Jackie M. Corrin, Philip Girard, Emily J. Basom, Ryan Delrow, Jeffrey J. Olson, James M. Paddison, Patrick J. |
author_sort | Ding, Yu |
collection | PubMed |
description | Zinc finger domain genes comprise ∼3% of the human genome, yet many of their functions remain unknown. Here we investigated roles for the vertebrate-specific BTB domain zinc finger gene ZNF131 in the context of human brain tumors. We report that ZNF131 is broadly required for Glioblastoma stem-like cell (GSC) viability, but dispensable for neural progenitor cell (NPC) viability. Examination of gene expression changes after ZNF131 knockdown (kd) revealed that ZNF131 activity notably promotes expression of Joubert Syndrome ciliopathy genes, including KIF7, NPHP1, and TMEM237, as well as HAUS5, a component of Augmin/HAUS complex that facilitates microtubule nucleation along the mitotic spindle. Of these genes only kd of HAUS5 displayed GSC-specific viability loss. Critically, HAUS5 ectopic expression was sufficient to suppress viability defects of ZNF131 kd cells. Moreover, ZNF131 and HAUS5 kd phenocopied each other in GSCs, each causing: mitotic arrest, centrosome fragmentation, loss of Augmin/HAUS complex on the mitotic spindle, and loss of GSC self-renewal and tumor formation capacity. In control NPCs, we observed centrosome fragmentation and lethality only when HAUS5 kd was combined with kd of HAUS2 or HAUS4, demonstrating that the complex is essential in NPCs, but that GSCs have heightened requirement. Our results suggest that GSCs differentially rely on ZNF131-dependent expression of HAUS5 as well as the Augmin/HAUS complex activity to maintain the integrity of centrosome function and viability. |
format | Online Article Text |
id | pubmed-5564707 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-55647072017-08-23 ZNF131 suppresses centrosome fragmentation in glioblastoma stem-like cells through regulation of HAUS5 Ding, Yu Herman, Jacob A. Toledo, Chad M. Lang, Jackie M. Corrin, Philip Girard, Emily J. Basom, Ryan Delrow, Jeffrey J. Olson, James M. Paddison, Patrick J. Oncotarget Priority Research Paper Zinc finger domain genes comprise ∼3% of the human genome, yet many of their functions remain unknown. Here we investigated roles for the vertebrate-specific BTB domain zinc finger gene ZNF131 in the context of human brain tumors. We report that ZNF131 is broadly required for Glioblastoma stem-like cell (GSC) viability, but dispensable for neural progenitor cell (NPC) viability. Examination of gene expression changes after ZNF131 knockdown (kd) revealed that ZNF131 activity notably promotes expression of Joubert Syndrome ciliopathy genes, including KIF7, NPHP1, and TMEM237, as well as HAUS5, a component of Augmin/HAUS complex that facilitates microtubule nucleation along the mitotic spindle. Of these genes only kd of HAUS5 displayed GSC-specific viability loss. Critically, HAUS5 ectopic expression was sufficient to suppress viability defects of ZNF131 kd cells. Moreover, ZNF131 and HAUS5 kd phenocopied each other in GSCs, each causing: mitotic arrest, centrosome fragmentation, loss of Augmin/HAUS complex on the mitotic spindle, and loss of GSC self-renewal and tumor formation capacity. In control NPCs, we observed centrosome fragmentation and lethality only when HAUS5 kd was combined with kd of HAUS2 or HAUS4, demonstrating that the complex is essential in NPCs, but that GSCs have heightened requirement. Our results suggest that GSCs differentially rely on ZNF131-dependent expression of HAUS5 as well as the Augmin/HAUS complex activity to maintain the integrity of centrosome function and viability. Impact Journals LLC 2017-05-24 /pmc/articles/PMC5564707/ /pubmed/28596487 http://dx.doi.org/10.18632/oncotarget.18153 Text en Copyright: © 2017 Ding et al. http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Priority Research Paper Ding, Yu Herman, Jacob A. Toledo, Chad M. Lang, Jackie M. Corrin, Philip Girard, Emily J. Basom, Ryan Delrow, Jeffrey J. Olson, James M. Paddison, Patrick J. ZNF131 suppresses centrosome fragmentation in glioblastoma stem-like cells through regulation of HAUS5 |
title | ZNF131 suppresses centrosome fragmentation in glioblastoma stem-like cells through regulation of HAUS5 |
title_full | ZNF131 suppresses centrosome fragmentation in glioblastoma stem-like cells through regulation of HAUS5 |
title_fullStr | ZNF131 suppresses centrosome fragmentation in glioblastoma stem-like cells through regulation of HAUS5 |
title_full_unstemmed | ZNF131 suppresses centrosome fragmentation in glioblastoma stem-like cells through regulation of HAUS5 |
title_short | ZNF131 suppresses centrosome fragmentation in glioblastoma stem-like cells through regulation of HAUS5 |
title_sort | znf131 suppresses centrosome fragmentation in glioblastoma stem-like cells through regulation of haus5 |
topic | Priority Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5564707/ https://www.ncbi.nlm.nih.gov/pubmed/28596487 http://dx.doi.org/10.18632/oncotarget.18153 |
work_keys_str_mv | AT dingyu znf131suppressescentrosomefragmentationinglioblastomastemlikecellsthroughregulationofhaus5 AT hermanjacoba znf131suppressescentrosomefragmentationinglioblastomastemlikecellsthroughregulationofhaus5 AT toledochadm znf131suppressescentrosomefragmentationinglioblastomastemlikecellsthroughregulationofhaus5 AT langjackiem znf131suppressescentrosomefragmentationinglioblastomastemlikecellsthroughregulationofhaus5 AT corrinphilip znf131suppressescentrosomefragmentationinglioblastomastemlikecellsthroughregulationofhaus5 AT girardemilyj znf131suppressescentrosomefragmentationinglioblastomastemlikecellsthroughregulationofhaus5 AT basomryan znf131suppressescentrosomefragmentationinglioblastomastemlikecellsthroughregulationofhaus5 AT delrowjeffreyj znf131suppressescentrosomefragmentationinglioblastomastemlikecellsthroughregulationofhaus5 AT olsonjamesm znf131suppressescentrosomefragmentationinglioblastomastemlikecellsthroughregulationofhaus5 AT paddisonpatrickj znf131suppressescentrosomefragmentationinglioblastomastemlikecellsthroughregulationofhaus5 |