Cargando…

Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy

To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Zhuozhuo, Guo, Wenchuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570952/
https://www.ncbi.nlm.nih.gov/pubmed/28839169
http://dx.doi.org/10.1038/s41598-017-09197-y
Descripción
Sumario:To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε′) and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε′ decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25–35 °C), both ε′ and ε″ increased with increasing moisture content. At low moisture contents (15.1–19.5% w.b.), they increased with increasing temperature. The change trends of ε′ and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d (p)) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.