Cargando…
Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression
Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression a...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578192/ https://www.ncbi.nlm.nih.gov/pubmed/28825623 http://dx.doi.org/10.3390/ijms18081805 |
_version_ | 1783260490737123328 |
---|---|
author | Umei, Tomohiko C. Yamakawa, Hiroyuki Muraoka, Naoto Sadahiro, Taketaro Isomi, Mari Haginiwa, Sho Kojima, Hidenori Kurotsu, Shota Tamura, Fumiya Osakabe, Rina Tani, Hidenori Nara, Kaori Miyoshi, Hiroyuki Fukuda, Keiichi Ieda, Masaki |
author_facet | Umei, Tomohiko C. Yamakawa, Hiroyuki Muraoka, Naoto Sadahiro, Taketaro Isomi, Mari Haginiwa, Sho Kojima, Hidenori Kurotsu, Shota Tamura, Fumiya Osakabe, Rina Tani, Hidenori Nara, Kaori Miyoshi, Hiroyuki Fukuda, Keiichi Ieda, Masaki |
author_sort | Umei, Tomohiko C. |
collection | PubMed |
description | Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming. |
format | Online Article Text |
id | pubmed-5578192 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-55781922017-09-05 Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression Umei, Tomohiko C. Yamakawa, Hiroyuki Muraoka, Naoto Sadahiro, Taketaro Isomi, Mari Haginiwa, Sho Kojima, Hidenori Kurotsu, Shota Tamura, Fumiya Osakabe, Rina Tani, Hidenori Nara, Kaori Miyoshi, Hiroyuki Fukuda, Keiichi Ieda, Masaki Int J Mol Sci Article Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming. MDPI 2017-08-19 /pmc/articles/PMC5578192/ /pubmed/28825623 http://dx.doi.org/10.3390/ijms18081805 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Umei, Tomohiko C. Yamakawa, Hiroyuki Muraoka, Naoto Sadahiro, Taketaro Isomi, Mari Haginiwa, Sho Kojima, Hidenori Kurotsu, Shota Tamura, Fumiya Osakabe, Rina Tani, Hidenori Nara, Kaori Miyoshi, Hiroyuki Fukuda, Keiichi Ieda, Masaki Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression |
title | Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression |
title_full | Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression |
title_fullStr | Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression |
title_full_unstemmed | Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression |
title_short | Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression |
title_sort | single-construct polycistronic doxycycline-inducible vectors improve direct cardiac reprogramming and can be used to identify the critical timing of transgene expression |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578192/ https://www.ncbi.nlm.nih.gov/pubmed/28825623 http://dx.doi.org/10.3390/ijms18081805 |
work_keys_str_mv | AT umeitomohikoc singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression AT yamakawahiroyuki singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression AT muraokanaoto singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression AT sadahirotaketaro singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression AT isomimari singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression AT haginiwasho singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression AT kojimahidenori singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression AT kurotsushota singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression AT tamurafumiya singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression AT osakaberina singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression AT tanihidenori singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression AT narakaori singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression AT miyoshihiroyuki singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression AT fukudakeiichi singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression AT iedamasaki singleconstructpolycistronicdoxycyclineinduciblevectorsimprovedirectcardiacreprogrammingandcanbeusedtoidentifythecriticaltimingoftransgeneexpression |