Cargando…

A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials

Metal–insulator transition (MIT) is one of the most essential topics in condensed matter physics and materials science. The accompanied drastic change in electrical resistance can be exploited in electronic devices, such as data storage and memory technology. It is generally accepted that the underl...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jiang-Jing, Xu, Ya-Zhi, Mazzarello, Riccardo, Wuttig, Matthias, Zhang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578228/
https://www.ncbi.nlm.nih.gov/pubmed/28773222
http://dx.doi.org/10.3390/ma10080862
_version_ 1783260499364806656
author Wang, Jiang-Jing
Xu, Ya-Zhi
Mazzarello, Riccardo
Wuttig, Matthias
Zhang, Wei
author_facet Wang, Jiang-Jing
Xu, Ya-Zhi
Mazzarello, Riccardo
Wuttig, Matthias
Zhang, Wei
author_sort Wang, Jiang-Jing
collection PubMed
description Metal–insulator transition (MIT) is one of the most essential topics in condensed matter physics and materials science. The accompanied drastic change in electrical resistance can be exploited in electronic devices, such as data storage and memory technology. It is generally accepted that the underlying mechanism of most MITs is an interplay of electron correlation effects (Mott type) and disorder effects (Anderson type), and to disentangle the two effects is difficult. Recent progress on the crystalline Ge(1)Sb(2)Te(4) (GST) compound provides compelling evidence for a disorder-driven MIT. In this work, we discuss the presence of strong disorder in GST, and elucidate its effects on electron localization and transport properties. We also show how the degree of disorder in GST can be reduced via thermal annealing, triggering a disorder-driven metal–insulator transition. The resistance switching by disorder tuning in crystalline GST may enable novel multilevel data storage devices.
format Online
Article
Text
id pubmed-5578228
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-55782282017-09-05 A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials Wang, Jiang-Jing Xu, Ya-Zhi Mazzarello, Riccardo Wuttig, Matthias Zhang, Wei Materials (Basel) Review Metal–insulator transition (MIT) is one of the most essential topics in condensed matter physics and materials science. The accompanied drastic change in electrical resistance can be exploited in electronic devices, such as data storage and memory technology. It is generally accepted that the underlying mechanism of most MITs is an interplay of electron correlation effects (Mott type) and disorder effects (Anderson type), and to disentangle the two effects is difficult. Recent progress on the crystalline Ge(1)Sb(2)Te(4) (GST) compound provides compelling evidence for a disorder-driven MIT. In this work, we discuss the presence of strong disorder in GST, and elucidate its effects on electron localization and transport properties. We also show how the degree of disorder in GST can be reduced via thermal annealing, triggering a disorder-driven metal–insulator transition. The resistance switching by disorder tuning in crystalline GST may enable novel multilevel data storage devices. MDPI 2017-07-27 /pmc/articles/PMC5578228/ /pubmed/28773222 http://dx.doi.org/10.3390/ma10080862 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Wang, Jiang-Jing
Xu, Ya-Zhi
Mazzarello, Riccardo
Wuttig, Matthias
Zhang, Wei
A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials
title A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials
title_full A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials
title_fullStr A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials
title_full_unstemmed A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials
title_short A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials
title_sort review on disorder-driven metal–insulator transition in crystalline vacancy-rich gesbte phase-change materials
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578228/
https://www.ncbi.nlm.nih.gov/pubmed/28773222
http://dx.doi.org/10.3390/ma10080862
work_keys_str_mv AT wangjiangjing areviewondisorderdrivenmetalinsulatortransitionincrystallinevacancyrichgesbtephasechangematerials
AT xuyazhi areviewondisorderdrivenmetalinsulatortransitionincrystallinevacancyrichgesbtephasechangematerials
AT mazzarelloriccardo areviewondisorderdrivenmetalinsulatortransitionincrystallinevacancyrichgesbtephasechangematerials
AT wuttigmatthias areviewondisorderdrivenmetalinsulatortransitionincrystallinevacancyrichgesbtephasechangematerials
AT zhangwei areviewondisorderdrivenmetalinsulatortransitionincrystallinevacancyrichgesbtephasechangematerials
AT wangjiangjing reviewondisorderdrivenmetalinsulatortransitionincrystallinevacancyrichgesbtephasechangematerials
AT xuyazhi reviewondisorderdrivenmetalinsulatortransitionincrystallinevacancyrichgesbtephasechangematerials
AT mazzarelloriccardo reviewondisorderdrivenmetalinsulatortransitionincrystallinevacancyrichgesbtephasechangematerials
AT wuttigmatthias reviewondisorderdrivenmetalinsulatortransitionincrystallinevacancyrichgesbtephasechangematerials
AT zhangwei reviewondisorderdrivenmetalinsulatortransitionincrystallinevacancyrichgesbtephasechangematerials