Cargando…

BayFish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA FISH in single cells

Single-molecule RNA fluorescence in situ hybridization (smFISH) provides unparalleled resolution in the measurement of the abundance and localization of nascent and mature RNA transcripts in fixed, single cells. We developed a computational pipeline (BayFish) to infer the kinetic parameters of gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Gómez-Schiavon, Mariana, Chen, Liang-Fu, West, Anne E., Buchler, Nicolas E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582403/
https://www.ncbi.nlm.nih.gov/pubmed/28870226
http://dx.doi.org/10.1186/s13059-017-1297-9
_version_ 1783261184140509184
author Gómez-Schiavon, Mariana
Chen, Liang-Fu
West, Anne E.
Buchler, Nicolas E.
author_facet Gómez-Schiavon, Mariana
Chen, Liang-Fu
West, Anne E.
Buchler, Nicolas E.
author_sort Gómez-Schiavon, Mariana
collection PubMed
description Single-molecule RNA fluorescence in situ hybridization (smFISH) provides unparalleled resolution in the measurement of the abundance and localization of nascent and mature RNA transcripts in fixed, single cells. We developed a computational pipeline (BayFish) to infer the kinetic parameters of gene expression from smFISH data at multiple time points after gene induction. Given an underlying model of gene expression, BayFish uses a Monte Carlo method to estimate the Bayesian posterior probability of the model parameters and quantify the parameter uncertainty given the observed smFISH data. We tested BayFish on synthetic data and smFISH measurements of the neuronal activity-inducible gene Npas4 in primary neurons. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-017-1297-9) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5582403
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-55824032017-09-06 BayFish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA FISH in single cells Gómez-Schiavon, Mariana Chen, Liang-Fu West, Anne E. Buchler, Nicolas E. Genome Biol Software Single-molecule RNA fluorescence in situ hybridization (smFISH) provides unparalleled resolution in the measurement of the abundance and localization of nascent and mature RNA transcripts in fixed, single cells. We developed a computational pipeline (BayFish) to infer the kinetic parameters of gene expression from smFISH data at multiple time points after gene induction. Given an underlying model of gene expression, BayFish uses a Monte Carlo method to estimate the Bayesian posterior probability of the model parameters and quantify the parameter uncertainty given the observed smFISH data. We tested BayFish on synthetic data and smFISH measurements of the neuronal activity-inducible gene Npas4 in primary neurons. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-017-1297-9) contains supplementary material, which is available to authorized users. BioMed Central 2017-09-04 /pmc/articles/PMC5582403/ /pubmed/28870226 http://dx.doi.org/10.1186/s13059-017-1297-9 Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Software
Gómez-Schiavon, Mariana
Chen, Liang-Fu
West, Anne E.
Buchler, Nicolas E.
BayFish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA FISH in single cells
title BayFish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA FISH in single cells
title_full BayFish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA FISH in single cells
title_fullStr BayFish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA FISH in single cells
title_full_unstemmed BayFish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA FISH in single cells
title_short BayFish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA FISH in single cells
title_sort bayfish: bayesian inference of transcription dynamics from population snapshots of single-molecule rna fish in single cells
topic Software
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582403/
https://www.ncbi.nlm.nih.gov/pubmed/28870226
http://dx.doi.org/10.1186/s13059-017-1297-9
work_keys_str_mv AT gomezschiavonmariana bayfishbayesianinferenceoftranscriptiondynamicsfrompopulationsnapshotsofsinglemoleculernafishinsinglecells
AT chenliangfu bayfishbayesianinferenceoftranscriptiondynamicsfrompopulationsnapshotsofsinglemoleculernafishinsinglecells
AT westannee bayfishbayesianinferenceoftranscriptiondynamicsfrompopulationsnapshotsofsinglemoleculernafishinsinglecells
AT buchlernicolase bayfishbayesianinferenceoftranscriptiondynamicsfrompopulationsnapshotsofsinglemoleculernafishinsinglecells