Cargando…
An in-silico approach to predict and exploit synthetic lethality in cancer metabolism
Synthetic lethality is a promising concept in cancer research, potentially opening new possibilities for the development of more effective and selective treatments. Here, we present a computational method to predict and exploit synthetic lethality in cancer metabolism. Our approach relies on the con...
Autores principales: | Apaolaza, Iñigo, San José-Eneriz, Edurne, Tobalina, Luis, Miranda, Estíbaliz, Garate, Leire, Agirre, Xabier, Prósper, Felipe, Planes, Francisco J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587678/ https://www.ncbi.nlm.nih.gov/pubmed/28878380 http://dx.doi.org/10.1038/s41467-017-00555-y |
Ejemplares similares
-
A network-based approach to integrate nutrient microenvironment in the prediction of synthetic lethality in cancer metabolism
por: Apaolaza, Iñigo, et al.
Publicado: (2022) -
In-silico gene essentiality analysis of polyamine biosynthesis reveals APRT as a potential target in cancer
por: Pey, Jon, et al.
Publicado: (2017) -
COBRA methods and metabolic drug targets in cancer
por: Apaolaza, Iñigo, et al.
Publicado: (2017) -
Identifying Lethal Dependencies with HUGE Predictive Power
por: Gimeno, Marian, et al.
Publicado: (2022) -
BOSO: A novel feature selection algorithm for linear regression with high-dimensional data
por: Valcárcel, Luis V., et al.
Publicado: (2022)