Cargando…

Coupling transcriptional activation of CRISPR–Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus

CRISPR–Cas system provides the adaptive immunity against invading genetic elements in prokaryotes. Recently, we demonstrated that Csa3a regulator mediates spacer acquisition in Sulfolobus islandicus by activating the expression of Type I-A adaptation cas genes. However, links between the activation...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Tao, Liu, Zhenzhen, Ye, Qing, Pan, Saifu, Wang, Xiaodi, Li, Yingjun, Peng, Wenfang, Liang, Yunxiang, She, Qunxin, Peng, Nan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587795/
https://www.ncbi.nlm.nih.gov/pubmed/28911114
http://dx.doi.org/10.1093/nar/gkx612
_version_ 1783262062125776896
author Liu, Tao
Liu, Zhenzhen
Ye, Qing
Pan, Saifu
Wang, Xiaodi
Li, Yingjun
Peng, Wenfang
Liang, Yunxiang
She, Qunxin
Peng, Nan
author_facet Liu, Tao
Liu, Zhenzhen
Ye, Qing
Pan, Saifu
Wang, Xiaodi
Li, Yingjun
Peng, Wenfang
Liang, Yunxiang
She, Qunxin
Peng, Nan
author_sort Liu, Tao
collection PubMed
description CRISPR–Cas system provides the adaptive immunity against invading genetic elements in prokaryotes. Recently, we demonstrated that Csa3a regulator mediates spacer acquisition in Sulfolobus islandicus by activating the expression of Type I-A adaptation cas genes. However, links between the activation of spacer adaptation and CRISPR transcription/processing, and the requirement for DNA repair genes during spacer acquisition remained poorly understood. Here, we demonstrated that de novo spacer acquisition required Csa1, Cas1, Cas2 and Cas4 proteins of the Sulfolobus Type I-A system. Disruption of genes implicated in crRNA maturation or DNA interference led to a significant accumulation of acquired spacers, mainly derived from host genomic DNA. Transcriptome and proteome analyses showed that Csa3a activated expression of adaptation cas genes, CRISPR RNAs, and DNA repair genes, including herA helicase, nurA nuclease and DNA polymerase II genes. Importantly, Csa3a specifically bound the promoters of the above DNA repair genes, suggesting that they were directly activated by Csa3a for adaptation. The Csa3a regulator also specifically bound to the leader sequence to activate CRISPR transcription in vivo. Our data indicated that the Csa3a regulator couples transcriptional activation of the CRISPR–Cas system and DNA repair genes for spacer adaptation and efficient interference of invading genetic elements.
format Online
Article
Text
id pubmed-5587795
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-55877952017-09-11 Coupling transcriptional activation of CRISPR–Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus Liu, Tao Liu, Zhenzhen Ye, Qing Pan, Saifu Wang, Xiaodi Li, Yingjun Peng, Wenfang Liang, Yunxiang She, Qunxin Peng, Nan Nucleic Acids Res Molecular Biology CRISPR–Cas system provides the adaptive immunity against invading genetic elements in prokaryotes. Recently, we demonstrated that Csa3a regulator mediates spacer acquisition in Sulfolobus islandicus by activating the expression of Type I-A adaptation cas genes. However, links between the activation of spacer adaptation and CRISPR transcription/processing, and the requirement for DNA repair genes during spacer acquisition remained poorly understood. Here, we demonstrated that de novo spacer acquisition required Csa1, Cas1, Cas2 and Cas4 proteins of the Sulfolobus Type I-A system. Disruption of genes implicated in crRNA maturation or DNA interference led to a significant accumulation of acquired spacers, mainly derived from host genomic DNA. Transcriptome and proteome analyses showed that Csa3a activated expression of adaptation cas genes, CRISPR RNAs, and DNA repair genes, including herA helicase, nurA nuclease and DNA polymerase II genes. Importantly, Csa3a specifically bound the promoters of the above DNA repair genes, suggesting that they were directly activated by Csa3a for adaptation. The Csa3a regulator also specifically bound to the leader sequence to activate CRISPR transcription in vivo. Our data indicated that the Csa3a regulator couples transcriptional activation of the CRISPR–Cas system and DNA repair genes for spacer adaptation and efficient interference of invading genetic elements. Oxford University Press 2017-09-06 2017-07-14 /pmc/articles/PMC5587795/ /pubmed/28911114 http://dx.doi.org/10.1093/nar/gkx612 Text en © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Molecular Biology
Liu, Tao
Liu, Zhenzhen
Ye, Qing
Pan, Saifu
Wang, Xiaodi
Li, Yingjun
Peng, Wenfang
Liang, Yunxiang
She, Qunxin
Peng, Nan
Coupling transcriptional activation of CRISPR–Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus
title Coupling transcriptional activation of CRISPR–Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus
title_full Coupling transcriptional activation of CRISPR–Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus
title_fullStr Coupling transcriptional activation of CRISPR–Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus
title_full_unstemmed Coupling transcriptional activation of CRISPR–Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus
title_short Coupling transcriptional activation of CRISPR–Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus
title_sort coupling transcriptional activation of crispr–cas system and dna repair genes by csa3a in sulfolobus islandicus
topic Molecular Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587795/
https://www.ncbi.nlm.nih.gov/pubmed/28911114
http://dx.doi.org/10.1093/nar/gkx612
work_keys_str_mv AT liutao couplingtranscriptionalactivationofcrisprcassystemanddnarepairgenesbycsa3ainsulfolobusislandicus
AT liuzhenzhen couplingtranscriptionalactivationofcrisprcassystemanddnarepairgenesbycsa3ainsulfolobusislandicus
AT yeqing couplingtranscriptionalactivationofcrisprcassystemanddnarepairgenesbycsa3ainsulfolobusislandicus
AT pansaifu couplingtranscriptionalactivationofcrisprcassystemanddnarepairgenesbycsa3ainsulfolobusislandicus
AT wangxiaodi couplingtranscriptionalactivationofcrisprcassystemanddnarepairgenesbycsa3ainsulfolobusislandicus
AT liyingjun couplingtranscriptionalactivationofcrisprcassystemanddnarepairgenesbycsa3ainsulfolobusislandicus
AT pengwenfang couplingtranscriptionalactivationofcrisprcassystemanddnarepairgenesbycsa3ainsulfolobusislandicus
AT liangyunxiang couplingtranscriptionalactivationofcrisprcassystemanddnarepairgenesbycsa3ainsulfolobusislandicus
AT shequnxin couplingtranscriptionalactivationofcrisprcassystemanddnarepairgenesbycsa3ainsulfolobusislandicus
AT pengnan couplingtranscriptionalactivationofcrisprcassystemanddnarepairgenesbycsa3ainsulfolobusislandicus