Cargando…
A systematic comparison of error correction enzymes by next-generation sequencing
Gene synthesis, the process of assembling gene-length fragments from shorter groups of oligonucleotides (oligos), is becoming an increasingly important tool in molecular and synthetic biology. The length, quality and cost of gene synthesis are limited by errors produced during oligo synthesis and su...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587813/ https://www.ncbi.nlm.nih.gov/pubmed/28911123 http://dx.doi.org/10.1093/nar/gkx691 |
_version_ | 1783262066147065856 |
---|---|
author | Lubock, Nathan B. Zhang, Di Sidore, Angus M. Church, George M. Kosuri, Sriram |
author_facet | Lubock, Nathan B. Zhang, Di Sidore, Angus M. Church, George M. Kosuri, Sriram |
author_sort | Lubock, Nathan B. |
collection | PubMed |
description | Gene synthesis, the process of assembling gene-length fragments from shorter groups of oligonucleotides (oligos), is becoming an increasingly important tool in molecular and synthetic biology. The length, quality and cost of gene synthesis are limited by errors produced during oligo synthesis and subsequent assembly. Enzymatic error correction methods are cost-effective means to ameliorate errors in gene synthesis. Previous analyses of these methods relied on cloning and Sanger sequencing to evaluate their efficiencies, limiting quantitative assessment. Here, we develop a method to quantify errors in synthetic DNA by next-generation sequencing. We analyzed errors in model gene assemblies and systematically compared six different error correction enzymes across 11 conditions. We find that ErrASE and T7 Endonuclease I are the most effective at decreasing average error rates (up to 5.8-fold relative to the input), whereas MutS is the best for increasing the number of perfect assemblies (up to 25.2-fold). We are able to quantify differential specificities such as ErrASE preferentially corrects C/G transversions whereas T7 Endonuclease I preferentially corrects A/T transversions. More generally, this experimental and computational pipeline is a fast, scalable and extensible way to analyze errors in gene assemblies, to profile error correction methods, and to benchmark DNA synthesis methods. |
format | Online Article Text |
id | pubmed-5587813 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-55878132017-09-11 A systematic comparison of error correction enzymes by next-generation sequencing Lubock, Nathan B. Zhang, Di Sidore, Angus M. Church, George M. Kosuri, Sriram Nucleic Acids Res Synthetic Biology and Bioengineering Gene synthesis, the process of assembling gene-length fragments from shorter groups of oligonucleotides (oligos), is becoming an increasingly important tool in molecular and synthetic biology. The length, quality and cost of gene synthesis are limited by errors produced during oligo synthesis and subsequent assembly. Enzymatic error correction methods are cost-effective means to ameliorate errors in gene synthesis. Previous analyses of these methods relied on cloning and Sanger sequencing to evaluate their efficiencies, limiting quantitative assessment. Here, we develop a method to quantify errors in synthetic DNA by next-generation sequencing. We analyzed errors in model gene assemblies and systematically compared six different error correction enzymes across 11 conditions. We find that ErrASE and T7 Endonuclease I are the most effective at decreasing average error rates (up to 5.8-fold relative to the input), whereas MutS is the best for increasing the number of perfect assemblies (up to 25.2-fold). We are able to quantify differential specificities such as ErrASE preferentially corrects C/G transversions whereas T7 Endonuclease I preferentially corrects A/T transversions. More generally, this experimental and computational pipeline is a fast, scalable and extensible way to analyze errors in gene assemblies, to profile error correction methods, and to benchmark DNA synthesis methods. Oxford University Press 2017-09-06 2017-08-01 /pmc/articles/PMC5587813/ /pubmed/28911123 http://dx.doi.org/10.1093/nar/gkx691 Text en © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Synthetic Biology and Bioengineering Lubock, Nathan B. Zhang, Di Sidore, Angus M. Church, George M. Kosuri, Sriram A systematic comparison of error correction enzymes by next-generation sequencing |
title | A systematic comparison of error correction enzymes by next-generation sequencing |
title_full | A systematic comparison of error correction enzymes by next-generation sequencing |
title_fullStr | A systematic comparison of error correction enzymes by next-generation sequencing |
title_full_unstemmed | A systematic comparison of error correction enzymes by next-generation sequencing |
title_short | A systematic comparison of error correction enzymes by next-generation sequencing |
title_sort | systematic comparison of error correction enzymes by next-generation sequencing |
topic | Synthetic Biology and Bioengineering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587813/ https://www.ncbi.nlm.nih.gov/pubmed/28911123 http://dx.doi.org/10.1093/nar/gkx691 |
work_keys_str_mv | AT lubocknathanb asystematiccomparisonoferrorcorrectionenzymesbynextgenerationsequencing AT zhangdi asystematiccomparisonoferrorcorrectionenzymesbynextgenerationsequencing AT sidoreangusm asystematiccomparisonoferrorcorrectionenzymesbynextgenerationsequencing AT churchgeorgem asystematiccomparisonoferrorcorrectionenzymesbynextgenerationsequencing AT kosurisriram asystematiccomparisonoferrorcorrectionenzymesbynextgenerationsequencing AT lubocknathanb systematiccomparisonoferrorcorrectionenzymesbynextgenerationsequencing AT zhangdi systematiccomparisonoferrorcorrectionenzymesbynextgenerationsequencing AT sidoreangusm systematiccomparisonoferrorcorrectionenzymesbynextgenerationsequencing AT churchgeorgem systematiccomparisonoferrorcorrectionenzymesbynextgenerationsequencing AT kosurisriram systematiccomparisonoferrorcorrectionenzymesbynextgenerationsequencing |