Cargando…
KIF7 attenuates prostate tumor growth through LKB1-mediated AKT inhibition
This study investigated kinesin family member 7 (KIF7) expression and function in prostate cancer (PCa). Our results showed that KIF7 was significantly downregulated in PCa, compared with normal, benign prostatic hyperplasia and prostate intraepithelial neoplasia tissues, partially through promoter...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589603/ https://www.ncbi.nlm.nih.gov/pubmed/28903364 http://dx.doi.org/10.18632/oncotarget.17421 |
Sumario: | This study investigated kinesin family member 7 (KIF7) expression and function in prostate cancer (PCa). Our results showed that KIF7 was significantly downregulated in PCa, compared with normal, benign prostatic hyperplasia and prostate intraepithelial neoplasia tissues, partially through promoter hypermethylation. We further investigated the effects of KIF7 coiled coil (CC) domain and motor domain (MD) on PCa development in vitro and in vivo. Our results showed that KIF7-CC but not KIF7-MD significantly attenuated proliferation and colony formation, impeded migration and invasion, induced apoptosis and sensitized PCa cells to paclitaxel. Further analysis revealed that KIF7-CC enhanced LKB1 expression and phosphorylation at Ser(428), which induced PTEN phosphorylation at Ser(380)/Thr(382/383) and consequently blocked AKT phosphorylation at Ser(473). Downregulation of LKB1 significantly attenuated the suppressive effects of KIF7-CC on cell proliferation, colony formation and AKT phosphorylation. Furthermore, our in vivo studies showed that KIF7-CC reduced prostate tumorigenesis in cell-derived xenografts. Downregulation of LKB1 abrogated the anti-tumor effects of KIF7-CC in these xenografts. Taken together, these findings provide the first evidence to support the role of KIF7 as a negative regulator that inhibits PCa development partially through LKB1-mediated AKT inhibition. |
---|