Cargando…
The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer
High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 60...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589867/ https://www.ncbi.nlm.nih.gov/pubmed/28883475 http://dx.doi.org/10.1038/s41598-017-11461-0 |
_version_ | 1783262423332945920 |
---|---|
author | Shin, Yeonwoo Kim, Sang Tae Kim, Kuntae Kim, Mi Young Oh, Saeroonter Jeong, Jae Kyeong |
author_facet | Shin, Yeonwoo Kim, Sang Tae Kim, Kuntae Kim, Mi Young Oh, Saeroonter Jeong, Jae Kyeong |
author_sort | Shin, Yeonwoo |
collection | PubMed |
description | High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600 °C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO back-channel occurs with annealing at 300 °C, while complete crystallization of the active layer occurs at 400 °C. The field-effect mobility is significantly boosted to 54.0 cm(2)/V·s for the IGZO device with a metal-induced polycrystalline channel formed at 300 °C compared to 18.1 cm(2)/V·s for an amorphous IGZO TFT without a catalytic layer. This work proposes a facile and effective route to enhance device performance by crystallizing the IGZO layer with standard annealing temperatures, without the introduction of expensive laser irradiation processes. |
format | Online Article Text |
id | pubmed-5589867 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-55898672017-09-13 The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer Shin, Yeonwoo Kim, Sang Tae Kim, Kuntae Kim, Mi Young Oh, Saeroonter Jeong, Jae Kyeong Sci Rep Article High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600 °C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO back-channel occurs with annealing at 300 °C, while complete crystallization of the active layer occurs at 400 °C. The field-effect mobility is significantly boosted to 54.0 cm(2)/V·s for the IGZO device with a metal-induced polycrystalline channel formed at 300 °C compared to 18.1 cm(2)/V·s for an amorphous IGZO TFT without a catalytic layer. This work proposes a facile and effective route to enhance device performance by crystallizing the IGZO layer with standard annealing temperatures, without the introduction of expensive laser irradiation processes. Nature Publishing Group UK 2017-09-07 /pmc/articles/PMC5589867/ /pubmed/28883475 http://dx.doi.org/10.1038/s41598-017-11461-0 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Shin, Yeonwoo Kim, Sang Tae Kim, Kuntae Kim, Mi Young Oh, Saeroonter Jeong, Jae Kyeong The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer |
title | The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer |
title_full | The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer |
title_fullStr | The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer |
title_full_unstemmed | The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer |
title_short | The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer |
title_sort | mobility enhancement of indium gallium zinc oxide transistors via low-temperature crystallization using a tantalum catalytic layer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589867/ https://www.ncbi.nlm.nih.gov/pubmed/28883475 http://dx.doi.org/10.1038/s41598-017-11461-0 |
work_keys_str_mv | AT shinyeonwoo themobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer AT kimsangtae themobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer AT kimkuntae themobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer AT kimmiyoung themobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer AT ohsaeroonter themobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer AT jeongjaekyeong themobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer AT shinyeonwoo mobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer AT kimsangtae mobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer AT kimkuntae mobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer AT kimmiyoung mobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer AT ohsaeroonter mobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer AT jeongjaekyeong mobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer |