Cargando…

The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer

High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 60...

Descripción completa

Detalles Bibliográficos
Autores principales: Shin, Yeonwoo, Kim, Sang Tae, Kim, Kuntae, Kim, Mi Young, Oh, Saeroonter, Jeong, Jae Kyeong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589867/
https://www.ncbi.nlm.nih.gov/pubmed/28883475
http://dx.doi.org/10.1038/s41598-017-11461-0
_version_ 1783262423332945920
author Shin, Yeonwoo
Kim, Sang Tae
Kim, Kuntae
Kim, Mi Young
Oh, Saeroonter
Jeong, Jae Kyeong
author_facet Shin, Yeonwoo
Kim, Sang Tae
Kim, Kuntae
Kim, Mi Young
Oh, Saeroonter
Jeong, Jae Kyeong
author_sort Shin, Yeonwoo
collection PubMed
description High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600 °C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO back-channel occurs with annealing at 300 °C, while complete crystallization of the active layer occurs at 400 °C. The field-effect mobility is significantly boosted to 54.0 cm(2)/V·s for the IGZO device with a metal-induced polycrystalline channel formed at 300 °C compared to 18.1 cm(2)/V·s for an amorphous IGZO TFT without a catalytic layer. This work proposes a facile and effective route to enhance device performance by crystallizing the IGZO layer with standard annealing temperatures, without the introduction of expensive laser irradiation processes.
format Online
Article
Text
id pubmed-5589867
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-55898672017-09-13 The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer Shin, Yeonwoo Kim, Sang Tae Kim, Kuntae Kim, Mi Young Oh, Saeroonter Jeong, Jae Kyeong Sci Rep Article High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600 °C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO back-channel occurs with annealing at 300 °C, while complete crystallization of the active layer occurs at 400 °C. The field-effect mobility is significantly boosted to 54.0 cm(2)/V·s for the IGZO device with a metal-induced polycrystalline channel formed at 300 °C compared to 18.1 cm(2)/V·s for an amorphous IGZO TFT without a catalytic layer. This work proposes a facile and effective route to enhance device performance by crystallizing the IGZO layer with standard annealing temperatures, without the introduction of expensive laser irradiation processes. Nature Publishing Group UK 2017-09-07 /pmc/articles/PMC5589867/ /pubmed/28883475 http://dx.doi.org/10.1038/s41598-017-11461-0 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Shin, Yeonwoo
Kim, Sang Tae
Kim, Kuntae
Kim, Mi Young
Oh, Saeroonter
Jeong, Jae Kyeong
The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer
title The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer
title_full The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer
title_fullStr The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer
title_full_unstemmed The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer
title_short The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer
title_sort mobility enhancement of indium gallium zinc oxide transistors via low-temperature crystallization using a tantalum catalytic layer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589867/
https://www.ncbi.nlm.nih.gov/pubmed/28883475
http://dx.doi.org/10.1038/s41598-017-11461-0
work_keys_str_mv AT shinyeonwoo themobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer
AT kimsangtae themobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer
AT kimkuntae themobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer
AT kimmiyoung themobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer
AT ohsaeroonter themobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer
AT jeongjaekyeong themobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer
AT shinyeonwoo mobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer
AT kimsangtae mobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer
AT kimkuntae mobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer
AT kimmiyoung mobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer
AT ohsaeroonter mobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer
AT jeongjaekyeong mobilityenhancementofindiumgalliumzincoxidetransistorsvialowtemperaturecrystallizationusingatantalumcatalyticlayer