Cargando…
Engineering of CHO Cells for the Production of Recombinant Glycoprotein Vaccines with Xylosylated N-glycans
Xylose is a general component of O-glycans in mammals. Core-xylosylation of N-glycans is only found in plants and helminth. Consequently, xylosylated N-glycans cause immunological response in humans. We have used the F-protein of the human respiratory syncytial virus (RSV), one of the main causes of...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590453/ https://www.ncbi.nlm.nih.gov/pubmed/28952517 http://dx.doi.org/10.3390/bioengineering4020038 |
Sumario: | Xylose is a general component of O-glycans in mammals. Core-xylosylation of N-glycans is only found in plants and helminth. Consequently, xylosylated N-glycans cause immunological response in humans. We have used the F-protein of the human respiratory syncytial virus (RSV), one of the main causes of respiratory tract infection in infants and elderly, as a model protein for vaccination. The RSV-F protein was expressed in CHO-DG44 cells, which were further modified by co-expression of β1,2-xylosyltransferase from Nicotiana tabacum. Xylosylation of RSV-F N-glycans was shown by monosaccharide analysis and MALDI-TOF mass spectrometry. In immunogenic studies with a human artificial lymph node model, the engineered RSV-F protein revealed improved vaccination efficacy. |
---|