Cargando…

Linking primary producer diversity and food quality effects on herbivores: A biochemical perspective

Biodiversity can strongly influence trophic interactions. The nutritional quality of prey communities and how it is related to the prey diversity is suspected to be a major driver of biodiversity effects. As consumer growth can be co-limited by the supply of several biochemical components, biochemic...

Descripción completa

Detalles Bibliográficos
Autores principales: Marzetz, Vanessa, Koussoroplis, Apostolos-Manuel, Martin-Creuzburg, Dominik, Striebel, Maren, Wacker, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591185/
https://www.ncbi.nlm.nih.gov/pubmed/28887516
http://dx.doi.org/10.1038/s41598-017-11183-3
Descripción
Sumario:Biodiversity can strongly influence trophic interactions. The nutritional quality of prey communities and how it is related to the prey diversity is suspected to be a major driver of biodiversity effects. As consumer growth can be co-limited by the supply of several biochemical components, biochemically diverse prey communities should promote consumer growth. Yet, there is no clear consensus on how prey specific diversity is linked to community biochemical diversity since previous studies have considered only single nutritional quality traits. Here, we demonstrate that phytoplankton biochemical traits (fatty acids and sterols) can to a large extent explain Daphnia magna growth and its apparent dependence on phytoplankton species diversity. We find strong correlative evidence between phytoplankton species diversity, biochemical diversity, and growth. The relationship between species diversity and growth was partially explained by the fact that in many communities Daphnia was co-limited by long chained polyunsaturated fatty acids and sterols, which was driven by different prey taxa. We suggest that biochemical diversity is a good proxy for the presence of high food quality taxa, and a careful consideration of the distribution of the different biochemical traits among species is necessary before concluding about causal links between species diversity and consumer performance.