Cargando…
Splatter: simulation of single-cell RNA sequencing data
As single-cell RNA sequencing (scRNA-seq) technologies have rapidly developed, so have analysis methods. Many methods have been tested, developed, and validated using simulated datasets. Unfortunately, current simulations are often poorly documented, their similarity to real data is not demonstrated...
Autores principales: | Zappia, Luke, Phipson, Belinda, Oshlack, Alicia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596896/ https://www.ncbi.nlm.nih.gov/pubmed/28899397 http://dx.doi.org/10.1186/s13059-017-1305-0 |
Ejemplares similares
-
Gene length and detection bias in single cell RNA sequencing protocols
por: Phipson, Belinda, et al.
Publicado: (2017) -
splatPop: simulating population scale single-cell RNA sequencing data
por: Azodi, Christina B., et al.
Publicado: (2021) -
Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database
por: Zappia, Luke, et al.
Publicado: (2018) -
Gene set enrichment analysis for genome-wide DNA methylation data
por: Maksimovic, Jovana, et al.
Publicado: (2021) -
DiffVar: a new method for detecting differential variability with application to methylation in cancer and aging
por: Phipson, Belinda, et al.
Publicado: (2014)