Cargando…
Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation
BACKGROUND: Non-conventional yeasts present a huge, yet barely exploited, resource of yeast biodiversity for industrial applications. This presents a great opportunity to explore alternative ethanol-fermenting yeasts that are more adapted to some of the stress factors present in the harsh environmen...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597992/ https://www.ncbi.nlm.nih.gov/pubmed/28924451 http://dx.doi.org/10.1186/s13068-017-0899-5 |
_version_ | 1783263809819901952 |
---|---|
author | Mukherjee, Vaskar Radecka, Dorota Aerts, Guido Verstrepen, Kevin J. Lievens, Bart Thevelein, Johan M. |
author_facet | Mukherjee, Vaskar Radecka, Dorota Aerts, Guido Verstrepen, Kevin J. Lievens, Bart Thevelein, Johan M. |
author_sort | Mukherjee, Vaskar |
collection | PubMed |
description | BACKGROUND: Non-conventional yeasts present a huge, yet barely exploited, resource of yeast biodiversity for industrial applications. This presents a great opportunity to explore alternative ethanol-fermenting yeasts that are more adapted to some of the stress factors present in the harsh environmental conditions in second-generation (2G) bioethanol fermentation. Extremely tolerant yeast species are interesting candidates to investigate the underlying tolerance mechanisms and to identify genes that when transferred to existing industrial strains could help to design more stress-tolerant cell factories. For this purpose, we performed a high-throughput phenotypic evaluation of a large collection of non-conventional yeast species to identify the tolerance limits of the different yeast species for desirable stress tolerance traits in 2G bioethanol production. Next, 12 multi-tolerant strains were selected and used in fermentations under different stressful conditions. Five strains out of which, showing desirable fermentation characteristics, were then evaluated in small-scale, semi-anaerobic fermentations with lignocellulose hydrolysates. RESULTS: Our results revealed the phenotypic landscape of many non-conventional yeast species which have not been previously characterized for tolerance to stress conditions relevant for bioethanol production. This has identified for each stress condition evaluated several extremely tolerant non-Saccharomyces yeasts. It also revealed multi-tolerance in several yeast species, which makes those species good candidates to investigate the molecular basis of a robust general stress tolerance. The results showed that some non-conventional yeast species have similar or even better fermentation efficiency compared to S. cerevisiae in the presence of certain stressful conditions. CONCLUSION: Prior to this study, our knowledge on extreme stress-tolerant phenotypes in non-conventional yeasts was limited to only few species. Our work has now revealed in a systematic way the potential of non-Saccharomyces species to emerge either as alternative host species or as a source of valuable genetic information for construction of more robust industrial S. serevisiae bioethanol production yeasts. Striking examples include yeast species like Pichia kudriavzevii and Wickerhamomyces anomalus that show very high tolerance to diverse stress factors. This large-scale phenotypic analysis has yielded a detailed database useful as a resource for future studies to understand and benefit from the molecular mechanisms underlying the extreme phenotypes of non-conventional yeast species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-017-0899-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5597992 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-55979922017-09-18 Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation Mukherjee, Vaskar Radecka, Dorota Aerts, Guido Verstrepen, Kevin J. Lievens, Bart Thevelein, Johan M. Biotechnol Biofuels Research BACKGROUND: Non-conventional yeasts present a huge, yet barely exploited, resource of yeast biodiversity for industrial applications. This presents a great opportunity to explore alternative ethanol-fermenting yeasts that are more adapted to some of the stress factors present in the harsh environmental conditions in second-generation (2G) bioethanol fermentation. Extremely tolerant yeast species are interesting candidates to investigate the underlying tolerance mechanisms and to identify genes that when transferred to existing industrial strains could help to design more stress-tolerant cell factories. For this purpose, we performed a high-throughput phenotypic evaluation of a large collection of non-conventional yeast species to identify the tolerance limits of the different yeast species for desirable stress tolerance traits in 2G bioethanol production. Next, 12 multi-tolerant strains were selected and used in fermentations under different stressful conditions. Five strains out of which, showing desirable fermentation characteristics, were then evaluated in small-scale, semi-anaerobic fermentations with lignocellulose hydrolysates. RESULTS: Our results revealed the phenotypic landscape of many non-conventional yeast species which have not been previously characterized for tolerance to stress conditions relevant for bioethanol production. This has identified for each stress condition evaluated several extremely tolerant non-Saccharomyces yeasts. It also revealed multi-tolerance in several yeast species, which makes those species good candidates to investigate the molecular basis of a robust general stress tolerance. The results showed that some non-conventional yeast species have similar or even better fermentation efficiency compared to S. cerevisiae in the presence of certain stressful conditions. CONCLUSION: Prior to this study, our knowledge on extreme stress-tolerant phenotypes in non-conventional yeasts was limited to only few species. Our work has now revealed in a systematic way the potential of non-Saccharomyces species to emerge either as alternative host species or as a source of valuable genetic information for construction of more robust industrial S. serevisiae bioethanol production yeasts. Striking examples include yeast species like Pichia kudriavzevii and Wickerhamomyces anomalus that show very high tolerance to diverse stress factors. This large-scale phenotypic analysis has yielded a detailed database useful as a resource for future studies to understand and benefit from the molecular mechanisms underlying the extreme phenotypes of non-conventional yeast species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-017-0899-5) contains supplementary material, which is available to authorized users. BioMed Central 2017-09-13 /pmc/articles/PMC5597992/ /pubmed/28924451 http://dx.doi.org/10.1186/s13068-017-0899-5 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Mukherjee, Vaskar Radecka, Dorota Aerts, Guido Verstrepen, Kevin J. Lievens, Bart Thevelein, Johan M. Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation |
title | Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation |
title_full | Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation |
title_fullStr | Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation |
title_full_unstemmed | Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation |
title_short | Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation |
title_sort | phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597992/ https://www.ncbi.nlm.nih.gov/pubmed/28924451 http://dx.doi.org/10.1186/s13068-017-0899-5 |
work_keys_str_mv | AT mukherjeevaskar phenotypiclandscapeofnonconventionalyeastspeciesfordifferentstresstolerancetraitsdesirableinbioethanolfermentation AT radeckadorota phenotypiclandscapeofnonconventionalyeastspeciesfordifferentstresstolerancetraitsdesirableinbioethanolfermentation AT aertsguido phenotypiclandscapeofnonconventionalyeastspeciesfordifferentstresstolerancetraitsdesirableinbioethanolfermentation AT verstrepenkevinj phenotypiclandscapeofnonconventionalyeastspeciesfordifferentstresstolerancetraitsdesirableinbioethanolfermentation AT lievensbart phenotypiclandscapeofnonconventionalyeastspeciesfordifferentstresstolerancetraitsdesirableinbioethanolfermentation AT theveleinjohanm phenotypiclandscapeofnonconventionalyeastspeciesfordifferentstresstolerancetraitsdesirableinbioethanolfermentation |