Cargando…
Gugulipid causes hypercholesterolemia leading to endothelial dysfunction, increased atherosclerosis, and premature death by ischemic heart disease in male mice
For proper cholesterol metabolism, normal expression and function of scavenger receptor class B type I (SR-BI), a high-density lipoprotein (HDL) receptor, is required. Among the factors that regulate overall cholesterol homeostasis and HDL metabolism, the nuclear farnesoid X receptor plays an import...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5598962/ https://www.ncbi.nlm.nih.gov/pubmed/28910310 http://dx.doi.org/10.1371/journal.pone.0184280 |
_version_ | 1783264008844869632 |
---|---|
author | Leiva, Andrea Contreras-Duarte, Susana Amigo, Ludwig Sepúlveda, Esteban Boric, Mauricio Quiñones, Verónica Busso, Dolores Rigotti, Attilio |
author_facet | Leiva, Andrea Contreras-Duarte, Susana Amigo, Ludwig Sepúlveda, Esteban Boric, Mauricio Quiñones, Verónica Busso, Dolores Rigotti, Attilio |
author_sort | Leiva, Andrea |
collection | PubMed |
description | For proper cholesterol metabolism, normal expression and function of scavenger receptor class B type I (SR-BI), a high-density lipoprotein (HDL) receptor, is required. Among the factors that regulate overall cholesterol homeostasis and HDL metabolism, the nuclear farnesoid X receptor plays an important role. Guggulsterone, a bioactive compound present in the natural product gugulipid, is an antagonist of this receptor. This natural product is widely used globally as a natural lipid-lowering agent, although its anti-atherogenic cardiovascular benefit in animal models or humans is unknown. The aim of this study was to determine the effects of gugulipid on cholesterol homeostasis and development of mild and severe atherosclerosis in male mice. For this purpose, we evaluated the impact of gugulipid treatment on liver histology, plasma lipoprotein cholesterol, endothelial function, and development of atherosclerosis and/or ischemic heart disease in wild-type mice; apolipoprotein E knockout mice, a model of atherosclerosis without ischemic complications; and SR-B1 knockout and atherogenic–diet-fed apolipoprotein E hypomorphic (SR-BI KO/ApoER61(h/h)) mice, a model of lethal ischemic heart disease due to severe atherosclerosis. Gugulipid administration was associated with histological abnormalities in liver, increased alanine aminotransferase levels, lower hepatic SR-BI content, hypercholesterolemia due to increased HDL cholesterol levels, endothelial dysfunction, enhanced atherosclerosis, and accelerated death in animals with severe ischemic heart disease. In conclusion, our data show important adverse effects of gugulipid intake on HDL metabolism and atherosclerosis in male mice, suggesting potential and unknown deleterious effects on cardiovascular health in humans. In addition, these findings reemphasize the need for rigorous preclinical and clinical studies to provide guidance on the consumption of natural products and regulation of their use in the general population. |
format | Online Article Text |
id | pubmed-5598962 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-55989622017-09-22 Gugulipid causes hypercholesterolemia leading to endothelial dysfunction, increased atherosclerosis, and premature death by ischemic heart disease in male mice Leiva, Andrea Contreras-Duarte, Susana Amigo, Ludwig Sepúlveda, Esteban Boric, Mauricio Quiñones, Verónica Busso, Dolores Rigotti, Attilio PLoS One Research Article For proper cholesterol metabolism, normal expression and function of scavenger receptor class B type I (SR-BI), a high-density lipoprotein (HDL) receptor, is required. Among the factors that regulate overall cholesterol homeostasis and HDL metabolism, the nuclear farnesoid X receptor plays an important role. Guggulsterone, a bioactive compound present in the natural product gugulipid, is an antagonist of this receptor. This natural product is widely used globally as a natural lipid-lowering agent, although its anti-atherogenic cardiovascular benefit in animal models or humans is unknown. The aim of this study was to determine the effects of gugulipid on cholesterol homeostasis and development of mild and severe atherosclerosis in male mice. For this purpose, we evaluated the impact of gugulipid treatment on liver histology, plasma lipoprotein cholesterol, endothelial function, and development of atherosclerosis and/or ischemic heart disease in wild-type mice; apolipoprotein E knockout mice, a model of atherosclerosis without ischemic complications; and SR-B1 knockout and atherogenic–diet-fed apolipoprotein E hypomorphic (SR-BI KO/ApoER61(h/h)) mice, a model of lethal ischemic heart disease due to severe atherosclerosis. Gugulipid administration was associated with histological abnormalities in liver, increased alanine aminotransferase levels, lower hepatic SR-BI content, hypercholesterolemia due to increased HDL cholesterol levels, endothelial dysfunction, enhanced atherosclerosis, and accelerated death in animals with severe ischemic heart disease. In conclusion, our data show important adverse effects of gugulipid intake on HDL metabolism and atherosclerosis in male mice, suggesting potential and unknown deleterious effects on cardiovascular health in humans. In addition, these findings reemphasize the need for rigorous preclinical and clinical studies to provide guidance on the consumption of natural products and regulation of their use in the general population. Public Library of Science 2017-09-14 /pmc/articles/PMC5598962/ /pubmed/28910310 http://dx.doi.org/10.1371/journal.pone.0184280 Text en © 2017 Leiva et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Leiva, Andrea Contreras-Duarte, Susana Amigo, Ludwig Sepúlveda, Esteban Boric, Mauricio Quiñones, Verónica Busso, Dolores Rigotti, Attilio Gugulipid causes hypercholesterolemia leading to endothelial dysfunction, increased atherosclerosis, and premature death by ischemic heart disease in male mice |
title | Gugulipid causes hypercholesterolemia leading to endothelial dysfunction, increased atherosclerosis, and premature death by ischemic heart disease in male mice |
title_full | Gugulipid causes hypercholesterolemia leading to endothelial dysfunction, increased atherosclerosis, and premature death by ischemic heart disease in male mice |
title_fullStr | Gugulipid causes hypercholesterolemia leading to endothelial dysfunction, increased atherosclerosis, and premature death by ischemic heart disease in male mice |
title_full_unstemmed | Gugulipid causes hypercholesterolemia leading to endothelial dysfunction, increased atherosclerosis, and premature death by ischemic heart disease in male mice |
title_short | Gugulipid causes hypercholesterolemia leading to endothelial dysfunction, increased atherosclerosis, and premature death by ischemic heart disease in male mice |
title_sort | gugulipid causes hypercholesterolemia leading to endothelial dysfunction, increased atherosclerosis, and premature death by ischemic heart disease in male mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5598962/ https://www.ncbi.nlm.nih.gov/pubmed/28910310 http://dx.doi.org/10.1371/journal.pone.0184280 |
work_keys_str_mv | AT leivaandrea gugulipidcauseshypercholesterolemialeadingtoendothelialdysfunctionincreasedatherosclerosisandprematuredeathbyischemicheartdiseaseinmalemice AT contrerasduartesusana gugulipidcauseshypercholesterolemialeadingtoendothelialdysfunctionincreasedatherosclerosisandprematuredeathbyischemicheartdiseaseinmalemice AT amigoludwig gugulipidcauseshypercholesterolemialeadingtoendothelialdysfunctionincreasedatherosclerosisandprematuredeathbyischemicheartdiseaseinmalemice AT sepulvedaesteban gugulipidcauseshypercholesterolemialeadingtoendothelialdysfunctionincreasedatherosclerosisandprematuredeathbyischemicheartdiseaseinmalemice AT boricmauricio gugulipidcauseshypercholesterolemialeadingtoendothelialdysfunctionincreasedatherosclerosisandprematuredeathbyischemicheartdiseaseinmalemice AT quinonesveronica gugulipidcauseshypercholesterolemialeadingtoendothelialdysfunctionincreasedatherosclerosisandprematuredeathbyischemicheartdiseaseinmalemice AT bussodolores gugulipidcauseshypercholesterolemialeadingtoendothelialdysfunctionincreasedatherosclerosisandprematuredeathbyischemicheartdiseaseinmalemice AT rigottiattilio gugulipidcauseshypercholesterolemialeadingtoendothelialdysfunctionincreasedatherosclerosisandprematuredeathbyischemicheartdiseaseinmalemice |