Cargando…
Genistein up-regulates miR-20a to disrupt spermatogenesis via targeting Limk1
Genistein (GEN) is one of the isoflavones that has effect on male reproduction. However, the underlying mechanism remains unknown. miRNAs are a type of small non-coding RNAs that play important roles in spermatogenesis. We measured the GEN levels and miR-17-92 cluster expression in infertile subject...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5601687/ https://www.ncbi.nlm.nih.gov/pubmed/28938591 http://dx.doi.org/10.18632/oncotarget.17637 |
Sumario: | Genistein (GEN) is one of the isoflavones that has effect on male reproduction. However, the underlying mechanism remains unknown. miRNAs are a type of small non-coding RNAs that play important roles in spermatogenesis. We measured the GEN levels and miR-17-92 cluster expression in infertile subjects and found that miR-17-92 might be involved in GEN induced abnormal spermatogenesis. To clarify, we fed adult ICR mice with different doses of GEN (0, 0.5, 5, 50 and 250 mg/kg/day) for 35 days to study the underlying mechanism. We found that sperm average path velocity, straight-line velocity and eurvilinear velocity of the mice orally with GEN at 5mg/kg/day were significantly decreased, the expression levels of miR-17 and miR-20a in mice testis were higher in corresponding group. We also found miR-20a was the only miRNA that differentially expressed both in human and mice. By applying bioinformatics methods, Limk1 was predicted to be the target gene of miR-20a that is involved in spermatogenesis. Limk1 were significantly decreased in the corresponding group. Dual-luciferase report assay also proved that miR-20a could directly target Limk1. These results implied that Limk1 might be the target gene of miR-20a that is involved in GEN induced abnormal spermatogenesis. |
---|