Cargando…

Allele Age Under Non-Classical Assumptions is Clarified by an Exact Computational Markov Chain Approach

Determination of the age of an allele based on its population frequency is a well-studied problem in population genetics, for which a variety of approximations have been proposed. We present a new result that, surprisingly, allows the expectation and variance of allele age to be computed exactly (wi...

Descripción completa

Detalles Bibliográficos
Autores principales: De Sanctis, Bianca, Krukov, Ivan, de Koning, A. P. Jason
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605573/
https://www.ncbi.nlm.nih.gov/pubmed/28928413
http://dx.doi.org/10.1038/s41598-017-12239-0
Descripción
Sumario:Determination of the age of an allele based on its population frequency is a well-studied problem in population genetics, for which a variety of approximations have been proposed. We present a new result that, surprisingly, allows the expectation and variance of allele age to be computed exactly (within machine precision) for any finite absorbing Markov chain model in a matter of seconds. This approach makes none of the classical assumptions (e.g., weak selection, reversibility, infinite sites), exploits modern sparse linear algebra techniques, integrates over all sample paths, and is rapidly computable for Wright-Fisher populations up to N (e) = 100,000. With this approach, we study the joint effect of recurrent mutation, dominance, and selection, and demonstrate new examples of “selective strolls” where the classical symmetry of allele age with respect to selection is violated by weakly selected alleles that are older than neutral alleles at the same frequency. We also show evidence for a strong age imbalance, where rare deleterious alleles are expected to be substantially older than advantageous alleles observed at the same frequency when population-scaled mutation rates are large. These results highlight the under-appreciated utility of computational methods for the direct analysis of Markov chain models in population genetics.