Cargando…
SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models
Single-cell sequencing enables the inference of tumor phylogenies that provide insights on intra-tumor heterogeneity and evolutionary trajectories. Recently introduced methods perform this task under the infinite-sites assumption, violations of which, due to chromosomal deletions and loss of heteroz...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606061/ https://www.ncbi.nlm.nih.gov/pubmed/28927434 http://dx.doi.org/10.1186/s13059-017-1311-2 |
Sumario: | Single-cell sequencing enables the inference of tumor phylogenies that provide insights on intra-tumor heterogeneity and evolutionary trajectories. Recently introduced methods perform this task under the infinite-sites assumption, violations of which, due to chromosomal deletions and loss of heterozygosity, necessitate the development of inference methods that utilize finite-sites models. We propose a statistical inference method for tumor phylogenies from noisy single-cell sequencing data under a finite-sites model. The performance of our method on synthetic and experimental data sets from two colorectal cancer patients to trace evolutionary lineages in primary and metastatic tumors suggests that employing a finite-sites model leads to improved inference of tumor phylogenies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-017-1311-2) contains supplementary material, which is available to authorized users. |
---|