Cargando…
SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models
Single-cell sequencing enables the inference of tumor phylogenies that provide insights on intra-tumor heterogeneity and evolutionary trajectories. Recently introduced methods perform this task under the infinite-sites assumption, violations of which, due to chromosomal deletions and loss of heteroz...
Autores principales: | Zafar, Hamim, Tzen, Anthony, Navin, Nicholas, Chen, Ken, Nakhleh, Luay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606061/ https://www.ncbi.nlm.nih.gov/pubmed/28927434 http://dx.doi.org/10.1186/s13059-017-1311-2 |
Ejemplares similares
-
Comments on the model parameters in “SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models”
por: Zafar, Hamim, et al.
Publicado: (2019) -
SiCloneFit: Bayesian inference of population structure, genotype, and phylogeny of tumor clones from single-cell genome sequencing data
por: Zafar, Hamim, et al.
Publicado: (2019) -
Practical Speedup of Bayesian Inference of Species Phylogenies by Restricting the Space of Gene Trees
por: Wang, Yaxuan, et al.
Publicado: (2020) -
Variational inference using approximate likelihood under the coalescent with recombination
por: Liu, Xinhao, et al.
Publicado: (2021) -
Monovar: single nucleotide variant detection in single cells
por: Zafar, Hamim, et al.
Publicado: (2016)