Cargando…

E6/E7 oncogenes in epithelial suprabasal layers and estradiol promote cervical growth and ear regeneration

Tissue growth is a common characteristic of carcinogenesis and regeneration. Here we show that suprabasal expression of human papillomavirus (HPV)16 E6/E7 oncogenes in Tg(K6b-E6/E7) mice, similar to that observed in HPV-infected human tissue, and estradiol increased cervical epithelium growth and ea...

Descripción completa

Detalles Bibliográficos
Autores principales: García, C, Hernández-García, D, Valencia, C, Rojo-León, V, Pérez-Estrada, J-R, Werner, M, Covarrubias, L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608921/
https://www.ncbi.nlm.nih.gov/pubmed/28846079
http://dx.doi.org/10.1038/oncsis.2017.73
Descripción
Sumario:Tissue growth is a common characteristic of carcinogenesis and regeneration. Here we show that suprabasal expression of human papillomavirus (HPV)16 E6/E7 oncogenes in Tg(K6b-E6/E7) mice, similar to that observed in HPV-infected human tissue, and estradiol increased cervical epithelium growth and ear-hole closure efficiency. Oncogenes in combination with estradiol had a significant contribution to the proliferation of suprabasal cells of cervical epithelium that correlated with an increased expression of keratin genes. Remarkably, long-term treatments with estradiol resulted in evident cellular and tissue abnormalities indicative of a precancerous phenotype. Regenerating ear epithelium of transgenic mice also showed increased suprabasal cell proliferation and expression of keratin genes. Unexpectedly, we observed higher ear regeneration efficiency in adult than in young female mice, which was further increased by E6/E7 oncogenes. Supporting a role of estradiol in this phenomenon, ovariectomy and treatment with an estrogen receptor inhibitor caused a significant reduction in regenerative capacity. Our data suggest that Tg(K6b-E6/E7) mice are unique to mimic the initial stages of HPV-mediated cervical carcinogenesis, and ear regeneration could facilitate the elucidation of mechanisms involved.